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Abstract
Composites are ubiquitous throughout nature and often display both high strength and toughness, despite the use of simple base constitu-
ents. In the hopes of recreating the high-performance of natural composites, numerical methods such as finite element method (FEM) are
often used to calculate the mechanical properties of composites. However, the vast design space of composites and computational cost of
numerical methods limit the application of high-throughput computing for optimizing composite design, especially when considering the
entire failure path. In this work, the authors leverage deep learning (DL) to predict material properties (stiffness, strength, and toughness)
calculated by FEM, motivated by DL’s significantly faster inference speed. Results of this study demonstrate potential for DL to accelerate
composite design optimization.

Introduction
Composite materials, which offer a variety of advantages that
cannot be gained solely with only one of their constituents,
are actively used in advanced engineering applications such
as lightweight structures for aerospace and automotive indus-
tries. Natural creatures also exploit composites to protect them-
selves from threats in a variety of environments and to sustain
living conditions with the limited resources and building blocks
available in nature.[1–5] Design and fabrication methods of most
man-made synthetic composites have been well established
owing to their relatively simple arrangements. In comparison,
although extensive studies have been performed to understand
and mimic natural composites, it remains a daunting task to fab-
ricate bio-inspired structures via conventional manufacturing
processes because of their complex hierarchical structure rang-
ing from the nano- to macro-scale. Recently, the advancement
of additive manufacturing has facilitated the fabrication of
complex structures, and as a result, a variety of composite struc-
tures inspired by natural materials such as nacre, bone,
conch-shell, and spider silk have been fabricated and tested
via 3D-printing methods.[6–11]

Because many natural composites, synthesized via a
self-assembly process, have relatively periodic and regular
arrangements, their mechanical properties can be reasonably
understood by analyzing the load transfer mechanism of a

representative unit cell.[5,8,10,12] However, the applicability of
analytical approaches is limited in accurately predicting inelas-
tic responses such as fracture and plastic deformation, and pro-
viding statistically meaningful results accounting for the
inherent randomness in structural arrangements. Numerical
modeling based on finite element methods (FEM) can comple-
ment analytical approaches for predicting properties beyond the
elastic response regime such as toughness and strength e.g.,
phase field simulation for the initiation and propagation of cur-
vilinear cracks. Given the combinatorially large composite
design space of even simple binary systems, it is crucial to
develop a high throughput computing procedure for the rapid
in-silico testing and characterization of novel composite
designs.[13–18] However, such numerical schemes e.g., the
phase field formulation, are computationally expensive and
time consuming because they require the usage of a very fine
mesh to accommodate the smooth variation of the highly con-
centrated stress field near the crack tip and/or damage parame-
ter within the regularized diffusive width of the crack surface.
The high computational cost of numerical modeling as well
as the prohibitively large design parameter space of a compos-
ite makes conventional gradient-based optimization methods
that are based on multiple/iterative evaluations of target proper-
ties infeasible.

In 2012, deep learning (DL) burst onto the field of computer
vision, achieving record-breaking performance on the
ImageNet dataset, a diverse labeled image corpus with 1000
different image classes.[19] Since then, DL has been used to* These authors contributed equally to this work.
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great effect in natural language processing, reinforcement
learning, and image classification.[20] DL, which utilizes suc-
cessive layers of weighted units with non-linear activations,
is capable of approximating complex functions, learning to rep-
resent abstract features, and using raw data as input. In addition
to demonstrating excellent performance on traditional artificial
intelligence (AI) benchmarks, DL has also accelerated scien-
tific understanding. Neural networks have been used to predict
protein folding,[21] automatically focus a microscope for long-
time periods under dynamic biologic situations,[22] speed up
particle physics simulations,[23] and optimize kirigami cuts in
graphene.[24] One common theme is that neural networks are
capable of significantly speeding up, and oftentimes improving
upon, common analytical formulas that were painstakingly
crafted by experts in the field, simply by training on large
amounts of data.

In our previous work, we demonstrated the ability of convo-
lutional neural networks (CNNs), a type of neural network
architecture designed for computer vision tasks, to rapidly
and accurately predict material properties of composite designs
as calculated by FEM, enabling high-throughput material
design optimization.[25,26] Previously, FEM data were calcu-
lated up to the initiation of crack propagation in order to gener-
ate large amounts of data quickly. In this paper, our analysis
will consider the entire crack propagation process, rather than
just crack initiation. As a result, this problem is much more
computationally expensive because the number of iterations
in the simulation has increased dramatically. In this work, we
explore the feasibility of using DL algorithms to predict the
properties of composites when considering the entire failure
path. The data preparation and finite element procedure used
to obtain training data for our models are discussed in the
“Materials and methods” section. In the “Results and discus-
sion” section, we demonstrate how CNNs outperform tradi-
tional machine learning (ML) algorithms such as random
forest (RF) ensembles and linear regression. The scaling of
CNN performance with respect to the dataset size compared
with traditional ML methods is investigated and the flexibility
of CNN architecture is utilized to improve its performance on
smaller dataset sizes. The CNNs learned convolution filters
are visualized to better understand the features the CNN is
learning and to demonstrate its ability to hierarchically craft
representative features. Finally, we conclude and discuss future
opportunities in this research area.

Materials and methods
This section discusses the implementation of the FEM used to
obtain training data for our ML models. The data preparation,
training procedures, and implementation of various algorithms,
as well as the visualization algorithm for CNNs are described.

Finite element method
FEM was used to obtain our training data, with the ML algo-
rithms treating the material descriptors produced by an FEM
as the ground truth labels. The crack phase field solver was

based on the hybrid formulation for the quasi-static fracture
of elastic solids in the commercial finite element software
ABAQUS with user-element subroutine (UEL). Our previous
study showed that the hybrid formation adequately models
crack propagation under combined tensile and shear loading
and crack propagation within composite materials made of
two constituents whereas the widely used anisotropic formula-
tion produces unphysical results. The details of the implemen-
tation and validation can be found in our previous study.[13]

FEM simulations were performed with 2D plane stress
condition by employing CPS4 element. A large plate
(11 m × 11 m) is divided into 121 blocks (1 m × 1 m) and 70
hard and 51 soft blocks are randomly assigned to generate
26,000 composite configurations [Fig. 1(a)]. Even with the
design constraint placed on the number of hard and soft blocks,
there are still more than 1030 possible configurations. Material
properties of the hard and soft constituents are summarized in
Supplementary Material Table SI. Here, we chose a relatively
small domain size so that a reasonable amount of training
data can be obtained in a computationally feasible timeframe.
The number of elements per block was determined by search-
ing for the coarsest mesh that leads to an identical crack path
with the reference fine mesh simulations, which used 625 ele-
ments for each block. The interface between the hard and soft
blocks was assumed to be perfectly bonded. We chose a mod-
erately higher fraction (∼58%) of hard blocks, as we expected
to find tougher configurations to promote wavy crack propaga-
tion; such a mechanism is not likely to occur when the volume
fraction of hard domain is very large or very small. Each block
was divided into 144 elements (0.083 m × 0.083 m), totaling
17,424 elements for the entire plate [Fig. 1(a)]. The regulariza-
tion parameter, i.e., the characteristic diffusive length of the
crack, is set to be two times larger than the mesh size. A 2.5
m length pre-crack is placed at the middle of the sample before
performing quasi-static uniaxial tension tests.

Each composite design is characterized as a
121-dimensional row vector consisting of 0 and 1 correspond-
ing to soft and hard materials, respectively, as shown in Fig. 1
(b). From the stress–strain curves obtained from the FEM sim-
ulations, we obtain elastic modulus from the initial slope (linear
fitting within 0.005% strain), strength from the maximum
stress, and toughness (modulus) from the area under the
curve [Fig. 1(c)]. Note that the elastic modulus is much less
computationally expensive to calculate compared with strength
or toughness because it is calculated from the initial slope of the
stress–strain curve rather than the entire curve. FEM simula-
tions were run for the duration of the entire crack propagation
path, resulting in material descriptors beyond the elastic limit.
An example of a crack propagation path is shown in Fig. 1(d).

Data processing
To ensure a fair comparison, all our ML models used the same
data processing methodology, with the exception of the input
target shape. The target material property values were first nor-
malized to have a mean of 0 and a standard deviation of 1
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before being passed to a ML model. All experiments were per-
formed with a randomized 80/20 train/test distribution and each
experiment used 15 trials unless otherwise stated. Each trial had
a different random train/test distribution to test the model’s gen-
eralizability across the entire dataset. The number of trials was
limited by the computational cost of running many trials for all
models and material properties.

Baseline models
More conventional ML algorithms were used to establish a
benchmark to compare DL methods with. Ordinary least
squares (OLS) linear regression and an RF ensemble[27] with
100 decision trees were used as baseline models and imple-
mented using the open-source Python package scikit-learn.[28]

Default hyperparameters were used for linear regression and
RF. The input was an unraveled 121-dimensional row vector
representing the unit cell.

Convolutional neural networks
Our CNN was implemented using the open-source python
package Keras[29] with a TensorFlow backend. The batch size

for all experiments was set to 128 and the number of epochs
to 100. Mean squared error (MSE) was the loss function and
the Adam optimizer was used.[30] See Supplementary
Material Fig. S1(a) for a full description of the model architec-
ture. For CNN, an 11 × 11 matrix of binary labels is used rather
than the 121-dimensional vector to represent the unit cell in
order to take advantage of CNNs’ ability to parameterize 2D
inputs efficiently.

CNN filter visualization
Finally, we sought to understand what kind of features the con-
volution filters in each layer were learning to represent.
Drawing from previous work,[31] this question can be posed
as an optimization problem to maximize a given filter activation
with a matrix of constant norm. Although this is a non-convex
problem, gradient ascent can be used to find some local
minima. Nesterov accelerated gradient was used as the gradient
optimizer[32] with a step size (α) of 10−5 and a momentum (γ)
of 0.9 and an input image of size of 22 × 22. Although our
inputs are binary, we treat this as a continuous problem as a
simplification. Intermediate values would correspond to a linear

Figure 1. (a) Mesh size description and conditions for testing and developing the composites in this paper. (b) Converting the composite material unit cell
geometry to a row vector. (c) Deriving composite material properties from the FEM simulation stress–strain curves. (d) Full crack path of composites. The crack
path is represented by removing elements whose phase is greater than 0.9. Deformation is scaled by 50.
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interpolation between the soft and hard blocks. The larger input
image size was chosen for ease of visual understanding, as the
deeper filters had more complex activations that were more eas-
ily understood with larger input images. To improve our gradi-
ent ascent performance, 4000 random matrices are initialized,
and gradient ascent searched through the input space in parallel.
Early stopping is used to prevent gradient ascent from escaping
local minima by stopping gradient ascent after the average
score of the best-scoring 40 inputs begins to decrease. The
base CNN was slightly modified to have an additional convo-
lution layer to better understand the effect of multiple convolu-
tion layers. Although such a methodology for examining CNN
filters has been proposed previously, we expect different results
given our novel, material property prediction regression task, as
opposed to traditional image classification problems.

Results and discussion
Here, the data used to train our model and the performance of
various ML models are presented. Model performance is quan-
tified with a variety of metrics: MSE, mean absolute error
(MAE), and the square of the Pearson correlation coefficient
(R2). OLS, RF, and CNN performance with respect to dataset
size is characterized with the given metrics. Modulus as an
additional input to CNNs offers further improvements to
model performance in smaller data regimes and visualizations
of the learned convolution filters were used to explore what fea-
tures are relevant to CNNs.

Training data distribution
Understanding the distribution of our training data is an impor-
tant component of exploratory data analysis. Figures 2(a)–2(c)
present the histograms of the elastic modulus, strength, and
toughness from the stress–strain curves of 26,000 configura-
tions. The distribution of modulus, strength, and toughness is
roughly normal with a slight right skew. Ultimately, our goal
is to rapidly identify composite design patterns that exhibit
properties in the far-right tail of the distributions, oftentimes
maximizing their joint distributions e.g., high strength and
toughness. In addition, scatter plots between each pair of the
set of material descriptors (elastic modulus, strength, and
toughness) show the positive correlation among all three prop-
erties [Figs. 2(d)–2(f)]. This suggests that the “easy-to-obtain”
elastic property (elastic modulus) may serve as a useful descrip-
tor to predict “hard-to-obtain” properties (strength and tough-
ness) in ML.

Comparing CNNs with benchmark models
To establish the relative performance of CNNs to traditional
ML models, CNNs are compared with linear regression and
RFs on a variety of metrics. The distribution of predicted mate-
rial descriptors against their value ranking is shown in Fig. 3.
For elastic modulus and strength, the CNN closely captures
the underlying distribution, while linear regression and RF
are approximating the average value of the distribution. For

toughness, RF is slightly more accurate; see Fig. S2 for
model performance as measured by MSE, MAE, and R2.

Different black-box methods can be used as a method to
probe the underlying nature of the computation required to cal-
culate such values. For instance, it may be that RF performs
better on toughness because the nested if-statements are a closer
approximation to the actual toughness calculation method. This
offers the intriguing possibility of creating simple analytical
models inspired by or derived from the trained RF model and
is a research direction we plan to investigate in future work.
In particular, feature importance analysis is a promising method
to “open up the black box” of ML and confirm that the algo-
rithm is learning a realistic predictive model. Being able to
relate the performance of different types of models to the under-
lying analytical calculation would be a significant step forward
in improving and interpreting empirical models.

The design space for CNN is also very large; using tech-
niques such as neural architecture search[33] to find more opti-
mized architectures may improve performance of CNN beyond
that of RF. Differences in the CNN architecture for calculating
different material descriptors could be hypothesized based on
the known differences in actually simulating these descriptors
or conversely, could help us further understand how to speed
up simulations by using different approximation models.
Finally, CNNs generally scale better with increasing data;
with more data, CNNs will most likely come to outperform
RF at even calculating toughness. For the rest of the paper,
we will consider only CNNs, given their currently untapped
potential and excellent general performance.

Effect of dataset size of model performance
Given the intense compute resources required to generate our
dataset, a natural question to ask is how much data are enough
to train a CNN. Another important question is when to use tra-
ditional ML algorithms versus DL given a dataset of a certain
size. The performance of linear regression, RF, and CNN
with respect to the dataset size is evaluated on a variety of met-
rics. The results are shown in Fig. 4 for predicting modulus.

The performance of linear regression with respect to the
dataset size plateaus quickly, representing its limited model
capacity and is generally characteristic of parametric models.
RF and CNN exhibit continual improvements in performance
with dataset size as a result of being non-parametric models.
However, CNN performance scales much better with larger
datasets, outstripping the performance of RF at larger dataset
sizes. Note that CNNs’ superiority is not guaranteed over all
dataset ranges. In the small data regime, RF and linear regres-
sion perform better. Although for predicting modulus, the
threshold in dataset size occurs at around 5000 instances, the
threshold for other problems will vary based on the problem
complexity. This threshold is a good benchmark to use for
deciding how much data are needed for problems of similar
complexity and design. Changing experimental parameters
such as the unit cell size will most likely increase this threshold
but changing the ratio of hard and soft blocks should not

612▪ MRS COMMUNICATIONS • VOLUME 9 • ISSUE 2 • www.mrs.org/mrc
https://doi.org/10.1557/mrc.2019.49
Downloaded from https://www.cambridge.org/core. MIT Libraries, on 16 Jul 2019 at 05:14:17, subject to the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms.

https://doi.org/10.1557/mrc.2019.49
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Figure 2. Histograms of our 26,000 composite FEM results data based on (a) elastic modulus, (b) strength, and (c) toughness. Correlation plots between (d)
elastic modulus–strength, (e) strength–toughness, and (f) elastic modulus–toughness. “Corr” means Pearson’s linear correlation coefficient.

Figure 3. Comparing the distribution of values learned by the various models based on ranking for (a) elastic modulus, (b) strength, and (c) toughness.
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significantly change this threshold. For material descriptors,
some variation in the threshold results due to the differing
nature of the calculations required to obtain each descriptor
from the stress–strain curve and the metric chosen, as seen in
Fig. S3. The performance of linear regression, RF, and CNN
with respect to dataset size for predicting strength and tough-
ness is shown in Fig. S3.

Using modulus and unit cells as CNN inputs
One potential concern with using CNN for automating FEM is
that the large initial dataset required for training may pose a
challenging barrier to scalability. But, as shown in Figs. 2
(d)–2(f), the existence of positive correlations between the
three material descriptors (modulus, strength, and toughness)
suggests that we may be able to use the relatively less
compute-intensive elastic modulus property as a feature to
feed into the model to improve performance on descriptors
that are more computationally expensive to obtain with FEM.

Conveniently, neural networks are a flexible model that can
efficiently parameterize and synthesize multimodal inputs e.g.,
images and scalar values. Our normal CNN, which only took in
the unit cell matrix as an input, consisted of blocks of convolu-
tion and max pooling layers followed by a series of dense lay-
ers; batch normalization[34] and leaky ReLU activations were
used throughout. To pass in both a unit cell image and the asso-
ciated modulus value, the same CNN architecture was slightly
modified by adding another smaller neural network consisting
of dense and batch normalization layers, which took the mod-
ulus value as input. The output of this secondary, smaller net-
work was concatenated with the output of the final max pooling
layer in the CNN and fed into the series of dense and batch nor-
malization layers. See Fig. S1(b) for a diagram.

The performance of a neural network that takes in both the
composite unit cell and the associated elastic modulus value
compared with the regular CNN architecture that only uses
the composite unit cell at predicting strength is shown in
Fig. 5(a). A 50/50 train/test split was used instead of the regular
80/20 train/test split to demonstrate the utility of this method in

smaller datasets. The use of modulus as an additional feature
clearly improves the performance of neural networks even on
smaller datasets, demonstrating how extra information about
composite properties can be leveraged in conjunction with
the flexibility of neural networks to improve inference abilities.
Rather than just reporting average error values, we show the
kernel density estimate of the distribution of errors, as mea-
sured by a variety of metrics. The lack of overlap in violin
plots in Fig. 5(a) indicates that using modulus as an additional
feature significantly improves the performance of CNN on
smaller datasets. This augmentation technique can also be
applied to reduce the amount of training data required by
more data-intensive tasks, such as generative adversarial mod-
els for solving the inverse design problem.

Testing different CNN architectures
A wide variety of hyperparameters and architecture design
choices exist when creating CNNs. To show that our results
are generalizable for the entire family of CNN models and
that our results are not simply a result a hyperparameter tuning
and behind-the-scenes CNN architecture optimization, three
other CNN models with different architectures are constructed
and their performance in Fig. 5(b). Based on the ranking
curves, we can see that their performance is relatively similar
and they all learn the underlying distribution of elastic moduli
values well. The generalization of CNN performance to a vari-
ety of architectures signifies their potential in a variety of com-
putational mechanics fields. Ranking curves for the same set of
architectures for predicting strength and toughness are shown in
Fig. S4.

Visualizing convolution filters
The recursive convolution layers in the CNN learn to identify
features that are considered important to the model over the
course of training. Significant work has been carried out for
visualizing and understanding what types of features are
learned by convolution layers.[35] Specifically, each convolu-
tion filter can be thought of as a neuron that is heavily activated

Figure 4. The effect of dataset size on the performance of various models at predicting the elastic modulus as determined by the following metrics: (a) MAE, (b)
MSE, and (c) R2 which is the square of the Pearson correlation coefficient. The given dataset sizes are then fed into the models with an 80/20 train/test split. 95%
confidence intervals are shown.
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by certain features. Identifying what features activate each filter
in each layer can posed as an optimization problem that can be
solved with gradient ascent algorithms, which take advantage
of the backpropagation calculus built into neural networks.[31]

Gradient ascent searches through the input space to maximize
the activation of each filter i.e., “neuron,” where the activation
is measured by the average value of the output matrix of each
filter.

Based on previous work, the shallower convolution layers i.
e., the first one, appear to learn simple features while the deeper
convolution layers learn more complex features. In traditional
image classification, the shallower layers learn lines and color
boundaries. The deeper layers learn increasingly complex fea-
tures, starting with stripes and circles, and eventually faces,
flowers, and various animals.[35] However, previous studies
used datasets for image classification, whereas our dataset is
predicting material descriptors for composite designs.
Although we can use our intuition to guess at what hierarchical
features we use every day to recognize objects, that same intu-
ition is not necessarily present when engineers examine com-
posite designs. Thus, visualizing the convolution filter
activations may help us understand what kind of features are
determined to be important by the CNNs.

The learned convolution filters are shown in Fig. 6. The top
four filters in layer 1 are shown in Fig. 6(a), where each filter is
ranked according to the “best” solution found by the gradient
optimizer, the quality of the solution being measured by the

activation of the filter. The first layer is learning to detect simple
edges, mostly the right edge with hard blocks. The four most
activated filters in layer 2 [Fig. 6(b)] have learned to detect hor-
izontal and vertical stripes of alternating hard and soft blocks.
Finally, layer 3 [Fig. 6(c)] has the most complex features. It
seems layer 3 has learned to detect grids of horizontal soft
blocks and vertical hard blocks and vice versa. The layer 3 con-
volutions are the most complex and difficult to interpret as they
are compositions of the previous layer activations. The deeper
layers were also increasingly more difficult to optimize for; the
gradient optimizer stopped due to the early stopping mecha-
nism after a few iterations for the earlier layers but took
many more iterations to stop for later layers. In Figs. 6(d)–6
(f), we discretize the input unit cell values into ten evenly
spaced bins to simplify the visualization and make certain fea-
tures clearer.

As hypothesized, the learned filters are radically different
from those learned for traditional image classification.
However, the input cells that most activate each filter in the
sequential layers of the CNN still exhibit the hierarchical learn-
ing of features that is characteristic of CNNs; in our case, from
edges, to stripes, to alternating grids. Using visualization tech-
niques developed by the AI community to explore how CNNs
learn to predict various material properties (modulus, strength,
and toughness) and how their learning is affected by FEM sim-
ulation experimental parameters (crack direction and orienta-
tion, composite design constraints) is an unexplored avenue

Figure 5. (a) Comparing the distribution of performance of CNN across 15 trials with just a unit cell input versus with unit cell input and the associated modulus
value at predicting strength. The violin plots are kernel density estimates, which generate smoothed histograms from a given distribution. The metrics used are
the MAE, MSE, and R2 which is the square of the Pearson correlation coefficient. These models were evaluated with a 50/50 train/test split to better represent a
smaller dataset size. (b) The distribution of modulus values by ranking as predicted by different CNN architectures. “Base model” is the overall CNN architecture
used against RF and OLS. “Base model without BatchNorm” is the base model but with all batch normalization layers removed. “More convolution layers” is the
base model without max pooling layers and an extra Conv2D layer. “More dense layers” is the base model but with an extra dense layer at the end. Slight
alterations were made to kernel and pool size to keep similar number of parameters for all models.
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of explanatory AI in scientific applications that we plan to pur-
sue in future work.

Future work
DL is a much faster inference model, capable of making predic-
tions on hundreds of samples in less than a few seconds. In
future work, we hope to use optimization algorithms to dis-
cover high strength and toughness composite designs based
on DL predictions and validated by FEM. In addition, further
investigation into neural generative models and more advanced
DL models will be undertaken. Finally, significant effort has
placed on “opening the black-box” of DL; applying the tech-
niques developed by the AI community, such as convolution
filter visualization, to CNNs trained on FEM may help further
understanding of how to develop fast approximations of FEM.
Ultimately, rapid and accurate simulations based on DL in con-
junction with experimental validation via additive manufactur-
ing processes present a novel paradigm for composite design
and discovery.

Conclusions
In summary, we have shown that CNNs are capable of accu-
rately predicting mechanical properties of composite materials.
Whereas most previous work focused on predicting material’s
properties in the elastic regime, this study thoroughly investi-
gates the possibility of using ML to detect patterns beyond
the elastic regime, overcoming barriers present in current finite
element simulation techniques. The relationship between data-
set size and various ML algorithms’ performance was investi-
gated and the results for CNN are demonstrated to be

generalizable and not specific to a certain CNN architecture.
Finally, by visualizing the learned convolution filters, it is dem-
onstrated that the CNN learned hierarchical unit cell features.
Use of DL to accelerate FEM calculations offers the tantalizing
possibility of discovering novel composite designs via high
throughput computation and optimization.

Supplementary material
The supplementary material for this article can be found at
https://doi.org/10.1557/mrc.2019.49
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