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Fused deposition modeling, a widely used additive manufacturing process, currently faces challenges in
printed part quality such as under-extrusion and over-extrusion. In this paper, a real-time monitoring
and autonomous correction system is developed, where a deep learning model and a feedback loop is
used to modify 3D-printing parameters iteratively and adaptively. Results show that our system is cap-
able of detecting in-plane printing conditions and in-situ correct defects faster than the speed of a
human’s response. The fundamental elements in the framework proposed can be extended to various
3D-printing technologies to reliably fabricate high-performance materials in challenging environments
without human interaction.

� 2019 Society of Manufacturing Engineers (SME). Published by Elsevier Ltd. All rights reserved.
1. Introduction

Additive manufacturing has made huge strides in the past dec-
ades – it is now possible to fabricate multiscale, multimaterial and
multifunctional designs previously deemed as impossible [1–6].
Fused deposition modeling (FDM) technology, which slices a model
into thin layers where polymer filament is deposited to sketch the
contour and fill the internal area layer-by-layer, is the most widely
used additive manufacturing method for its low cost and ease of
operation [7,8]. One limitation of FDM printers, however, involves
in-plane printing issues such as under-extrusion and over-
extrusion. These common issues are hard to eliminate and can
accumulate to cause various print defects including undesired
low modulus, low toughness, rough print surface, among others
[9–11]. As a result, researchers have developed various approaches
to improve print quality including tool path optimization [12,13]
and mathematical modeling of printing parameters [14,15]. The
settings deduced from these methods, however, are specific to a
particular geometry or printer. Moreover, the approaches are not
able to monitor or correct printing parameters in real-time. Cur-
rently, manually tuning printing parameters is still the most effec-
tive method to correct problems and obtain optimal print quality
which requires extensive human experience and thus is not scal-
able to the industrial level.
Machine learning aided methods have been applied in recent
years to a wide range of fields such as autonomous driving, face
recognition, big data prediction, and materials design [16–20]. It
has also been utilized in the field of additive manufacturing to
inspect printing conditions [21]. Advanced methods such as com-
bining three-dimensional digital image correlation (3D-DIC) with
real-time monitoring for fused filament fabrication (FFF) printing
has also been explored in literature [22]. However, the previous
defect detection techniques either largely depend on the mathe-
matical calculation based on the image or require expensive exper-
imental equipment such as a DIC camera. Moreover, the previous
systems require pauses or stops during the printing process to con-
duct any print judgments and are not capable of real-time correct-
ing printing conditions. In this paper, we develop an autonomous
system incorporating advanced machine learning algorithms to
classify and detect printing issues and self-correct with optimal
processing parameters to reliably 3D-print high-performance
materials at fast rates and resolutions with enhanced dimensional
accuracy. Specifically, our real-time monitoring and refining plat-
form uses convolutional neural networks (CNN), which is a com-
monly used deep learning algorithm with images as input [23].
CNN transforms an image to an array of numbers that represent
its category and the model that describes the mapping is trained
and used to predict results for new unseen images. CNN algorithms
are known for their capability to process and learn the spatial hier-
archies of features in an image, while other classification methods
oftentimes lose this information. Moreover, numerous models are
attached to this algorithm such as AlexNet, Visual Geometry Group

http://crossmark.crossref.org/dialog/?doi=10.1016/j.mfglet.2019.09.005&domain=pdf
https://doi.org/10.1016/j.mfglet.2019.09.005
mailto:ggu@berkeley.edu
https://doi.org/10.1016/j.mfglet.2019.09.005
http://www.sciencedirect.com/science/journal/22138463
http://www.elsevier.com/locate/mfglet


12 Z. Jin et al. /Manufacturing Letters 22 (2019) 11–15
(VGG), Residual Network (ResNet); as our study focuses on input
images with difficult to distinguish features, ResNet is used due
to its superior performance on complex MNIST image data sets
[24]. The paper is organized as follows. Section 2 discusses the
experimental setup and methods used for the study. Section 3
shows the results and discussion of our training procedure and
refinement performance. Section 4 summarizes the work and pro-
poses future directions.
2. Experimental set-up and methods

Our machine learning based 3D-printing system consists of two
parts: a post-training procedure and an in-situ real-time monitor-
ing and refining section (Fig. 1a). In the first step, a CNN classifica-
tion model is trained using a ResNet 50 architecture [24]. After the
completion of the training period, during the 3D-printing process,
real-time images are continuously fed into the model and classified
to obtain the current printing condition. If an issue such as over-
Fig. 1. (a) The system work flow is comprised of a training procedure, real-time monitor
While monitoring, extracted real-time images will be fed into the saved model and
automatically when over or under-extrusion images are detected. (b) Modified CNN mo
more times to match the model input size, and output of the model will be a vector wi
extrusion is detected, adjusting commands will be automatically
executed to change printing parameters via an open-source 3D-
printer controlling GUI. Embedded in our system is a continuous
feedback detection and monitoring loop where images with new
settings will iterate until a good quality condition is achieved.

2.1. Training data collection

In this work, all prints are produced by a PRUSA i3 MK3 FDM
printer with polylactic acid (PLA) filament. An in-house designed
3D-printed camera mount is fixed on top of the extruder cap to
suspend the camera and provides a fixed monitoring view during
the printing process as seen in Fig. 2a. A 45� fan support is designed
and printed with one of its corners removed to provide a clear view
for monitoring. The camera model used in the system is a Logitech
C270. Its front panel is removed so that the focal length can be
adjusted for the best image quality at the print region beneath
the nozzle. Videos are recorded and labeled with the corresponding
categories: ‘Good-quality’, ‘Under-extrusion’ and ‘Over-extrusion’.
ing, and refining component. A CNN model is trained in the first part and recorded.
then classified into three categories. Printing parameters will then be changed
del is used in the system based on ResNet 50 architecture. Image is augmented six
th three elements.



Fig. 2. (a) Experimental setup where a mount is designed and 3D-printed to attach the camera near the nozzle area. (b) Representative zoomed-in images for six 3D-printed
blocks under different printing qualities categories of Under-extrusion, Good-quality, and Over-extrusion.

Z. Jin et al. /Manufacturing Letters 22 (2019) 11–15 13
For each category, two levels of condition are generated by printing
a five-layer block with size 50 mm � 50 mm � 1 mm. Representa-
tive topography 3D-printed samples for all three categories are
shown in Fig. 2b.

2.2. Machine learning algorithm and training procedure

The CNN model that is used in the training process is a pre-
trained ResNet 50 [25], which contains 16 residual blocks. In each
block, there are three convolutional layers. With one more convo-
lutional layer after input and another fully connected layer before
output, there are a total of 50 layers in the pre-trained model. To
better adapt our desired output with the model, the final layer is
deleted and connected with another two layers to decrease the
output size from 2048 to 3. Therefore, the output will be a vector
of three by one (Fig. 1b). For each category, around 120,000 images
are prepared, where 70% of them are randomly picked as training
data and the rest of them are treated as validation or testing data.

2.3. Monitoring and self-correction

After the machine learning model is trained, it will be trans-
ferred into the monitoring and refining system. During the 3D-
printing process, 20 real-time images are captured every 6 s and
fed into the model. It is of note that this image acquisition rate is
chosen to balance the accuracy of the testing result and the oper-
ational efficiency of the system. If fewer images are taken, the
input data volume would be too small for the algorithm to com-
pensate for the difficulties of accurately classifying the printing
quality at boundary areas. On the other hand, if more images are
considered, more computational operation and data accumulation
time (delay time) will be needed. Additionally, this rate can also be
modified to match the printing efficiency, which is controlled by
the printing parameter of printing speed. In our experiments, the
image acquisition rate is kept constant since the printing speed
is unchanged. After obtaining these 20 classification results, the
mode of them will be treated as one judgment of the current print-
ing condition. This method is adopted to eliminate any noise image
inputs and inaccurate classification that may occur when based
solely on a single image. If five successive over or
under-extrusion judgments appear, adjusting commands will be
sent automatically via Pronterface [26], an open-source program,
which can connect, control and communicate with the 3D-
printer. Among different printing parameters such as print speed,
flow rate, and nozzle height, in this work, the focus will be on
the adjustment of flow rate. Flow rate is considered to be the major
factor causing under and over-extrusion in 3D-printed materials
since the imperfections are attributed to the lack of or too much
flow of filaments. Other parameters such as print speed and nozzle
height are not considered here due to their minor effects on in-
plane issues; rather, these parameters play a larger role in inter-
layer issues such as warping and delamination. After one correc-
tion command is sent, five following updated judgments will be
recorded to decide whether the printing condition has improved.
If the printing condition has not improved, further adjustments
will be forwarded to the printer and the procedure will be repeated
until five continuous Good-quality results are finally received by
the system. Five consecutive judgments are employed here since
the improvement process does not happen instantaneously. Less
number of judgments do not provide enough time to reflect the
transition period, while more judgments would be unnecessary if
the condition has already reached a good quality condition.
3. Results and discussion

3.1. Validation of the model accuracy

The core component of the auto-correction system is a classi-
fication model which detects whether undesirable extrusion
exists. Before training the model, further image processing is
required for the collected video data. Full-sized images are trans-
formed from the video at 20 frames per second. Since there are
two perpendicular printing directions, in each direction, a fixed
32� 224 rectangle window is extracted along the newly printed
lines near the nozzle. In order to match the input image size of
our machine learning model, each image is augmented six more
times and concatenated together to form a 224� 224 image
(Fig. 3a). The input image has a physical width of 14 mm, which
results in a resolution of 407 pixels per inch (ppi). In order to
obtain an accurate model, the whole image data is trained for
a sufficient number of epochs. The loss rate and accuracy against
the epoch number are shown in Fig. 3b. The orange accuracy



Fig. 3. (a) Two extraction windows are used correspondingly to two printing paths. Images are then augmented six more times for model input. (b) Training result of the CNN
model shows the accuracy of the model on validation data set converges to 98% after 40 epochs of training. (c) Classification model validation and illustration of the
probability of an image in three output categories. (d) Response results when detecting Over-extrusion and Under-extrusion conditions. Zoomed-in images are taken by
microscope under 5� objective lens. Probability vs. time curves represent the probability of being certain category and are further binarized to red dots, which constitute
horizontal lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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curve converges to 98% after training for 40 epochs. Fig. 3c
shows an example of the prediction of six images from the val-
idation data set. The trained model takes an image as input and
returns a 3� 1 vector. The sum of each vector’s three entries is
normalized to 1 by a Softmax function such that they indicate
the probability of an image to fall into the corresponding cate-
gory. The final classification result of an image is determined
by the highest column where blue, green, orange column repre-
sents the probability of Under-extrusion, Good-quality, and Over-
extrusion respectively.
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3.2. Efficiency of the correction system

In addition to accuracy, a quick response is equally essential for
our platform to identify print quality variation and adjust its per-
formance before continuing the print. Therefore, response time is
measured when the printer corrects Under-extrusion or Over-
extrusion conditions. During the printing process, when an Over-
or Under-extrusion condition is detected, two transition states
from bad to good are presented in Fig. 3d. At t = 0 s, marked by
short vertical red dashed lines, the first Good-quality raster is
printed. The curves show the probability of Good-quality and
Over- or Under-extrusion images against time. As discussed previ-
ously, this probability is calculated by averaging the results of the
images in the nearest 6 s to reduce the uncertainties from the pho-
tos captured at the margin of the print. When the value of good-
quality probability surpasses another one, the collection of images
will be further classified as 1, otherwise, 0, represented by horizon-
tal red lines at the top or bottom edges of the two plots. The tran-
sitions from Over-extrusion and Under-extrusion to Good-quality
are first detected by the monitoring system at t ¼ 9:8 s and 8:6 s,
which are marked by long red dash lines in the figure. The interval
between every two neighboring black dash lines is 3 s which is the
time needed to print one raster. Normally, it takes three rasters for
human individuals to recognize improving print quality. Therefore,
the model is capable of distinguishing the shift equally or even fas-
ter than a human can under both cases. Besides the detection delay
of the monitoring system, the firmware delay (the time it takes for
the extrusion motor to execute the Ponterface command and start
to print modified rasters) is also a non-negligible component of the
total response time. This firmware response time highly depends
on the FDM printer and can vary from 12 to 18 s. The overall
response time of the in-situ correction system is thus determined
by the sum of the two delays.
4. Conclusions

In conclusion, we demonstrate an autonomous FDM 3D-
printing platform which can in-situ monitor and adjust printing
conditions based on a trained machine learning algorithm. Our
algorithms are able to achieve above 98% accuracy in predicting
the printed part status quality. Additionally, the response rate of
the system reaches or even surpasses the human reaction and
the model can recognize inferior images that humans will have a
difficult time to distinguish with high accuracy. Future work for
improving the system involves augmenting the training data set
to make the model more robust, increasing the degrees of printing
quality levels to make the refinement stage more effective, and
separate models focusing on images at the boundary such as cor-
ners which often have limited training information during the
assessment period. The framework thus developed in this paper
to detect and self-correct systems in FDM technologies has the
potential to be applied to other materials and manufacturing sys-
tems to reliably 3D-print high-performance materials especially
in challenging environments without human interaction.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

The authors acknowledge support from the Extreme Science
and Engineering Discovery Environment (XSEDE) by National
Science Foundation grant number ACI-1548562. Additionally, the
authors acknowledge support from an NVIDIA GPU Seed Grant,
Johnson & Johnson WiSTEM2D Scholars Award, and an Amazon
Research Award.

References

[1] Momeni FM, Mehdi Hassani NS, Liu X, Ni J. A review of 4D printing. Mater Des
2017;122:42–79. https://doi.org/10.1016/J.MATDES.2017.02.068.

[2] Zhang Z, Demir KG, Gu GX. Developments in 4D-printing: a review on current
smart materials, technologies, and applications. Int J Smart Nano Mater
2019:1–20. https://doi.org/10.1080/19475411.2019.1591541.

[3] Jared BH, Aguilo MA, Beghini LL, Boyce BL, Clark BW, Cook A, et al. Additive
manufacturing: toward holistic design. Scr Mater 2017;135:141–7. https://doi.
org/10.1016/J.SCRIPTAMAT.2017.02.029.

[4] Melchels FPW, Domingos MAN, Klein TJ, Malda J, Bartolo PJ, Hutmacher DW.
Additive manufacturing of tissues and organs. Prog Polym Sci
2012;37:1079–104. https://doi.org/10.1016/j.progpolymsci.2011.11.007.

[5] Gu GX, Takaffoli M, Buehler MJ. Hierarchically enhanced impact resistance of
bioinspired composites. Adv Mater 2017;29:1–7. https://doi.org/10.1002/
adma.201700060.

[6] Gu GX, Wettermark S, Buehler MJ. Algorithm-driven design of fracture
resistant composite materials realized through additive manufacturing. Addit
Manuf 2017;17:47–54. https://doi.org/10.1016/J.ADDMA.2017.07.002.

[7] Gibson I, Rosen D, Stucker B. Additive manufacturing technologies: 3D
printing, rapid prototyping, and direct digital manufacturing, second edition.
2015. doi:10.1007/978-1-4939-2113-3.

[8] Gao W, Zhang Y, Ramanujan D, Ramani K, Chen Y, Williams CB, et al. The
status, challenges, and future of additive manufacturing in engineering. CAD
Comput Aided Des 2015;69:65–89. https://doi.org/10.1016/j.cad.2015.04.001.

[9] Bellehumeur C, Li L, Sun Q, Gu P. Modeling of bond formation between polymer
filaments in the fused deposition modeling process. J Manuf Process
2004;6:170–8. https://doi.org/10.1016/S1526-6125(04)70071-7.

[10] Hart KR, Wetzel ED. Fracture behavior of additively manufactured acrylonitrile
butadiene styrene (ABS) materials. Eng Fract Mech 2017;177:1–13. https://
doi.org/10.1016/J.ENGFRACMECH.2017.03.028.

[11] Ahn D, Kweon J-H, Kwon S, Song J, Lee S. Representation of surface roughness
in fused deposition modeling. J Mater Process Technol 2009;209:5593–600.
https://doi.org/10.1016/J.JMATPROTEC.2009.05.016.

[12] Dreifus G, Rapone B, Bowers J, Chen X, Hart AJ, Krishnamoorthy B. A
framework for tool path optimization in fused filament fabrication. In: Proc.
1st Annu. ACM Symp. Comput. Fabr. - SCF ’17, New York. New York, USA: ACM
Press; 2017. p. 1–2. https://doi.org/10.1145/3083157.3092883.

[13] Chakraborty D, Aneesh Reddy B, Roy Choudhury A. Extruder path generation
for curved layer fused deposition modeling. CAD Comput Aided Des
2008;40:235–43. https://doi.org/10.1016/j.cad.2007.10.014.

[14] Mohamed OA, Masood SH, Bhowmik JL. Optimization of fused deposition
modeling process parameters for dimensional accuracy using I-optimality
criterion. Measurement 2016;81:174–96. https://doi.org/10.1016/J.
MEASUREMENT.2015.12.011.

[15] Peng A, Xiao X, Yue R. Process parameter optimization for fused deposition
modeling using response surface methodology combined with fuzzy inference
system. Int J Adv Manuf Technol 2014;73:87–100. https://doi.org/10.1007/
s00170-014-5796-5.

[16] Chen CT, Gu GX. Effect of constituent materials on composite performance:
exploring design strategies via machine learning. Adv Theory Simulations
2019;2:1900056. https://doi.org/10.1002/adts.201900056.

[17] Yang C, Kim Y, Ryu S, Gu GX. Using convolutional neural networks to predict
composite properties beyond the elastic limit. MRS Commun 2019:1–9.
https://doi.org/10.1557/mrc.2019.49.

[18] Pilania G, Wang C, Jiang X, Rajasekaran S, Ramprasad R. Accelerating materials
property predictions using machine learning. Sci Rep 2013;3:2810. https://doi.
org/10.1038/srep02810.

[19] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015;521:436–44. https://
doi.org/10.1038/nature14539.

[20] Gu GX, Chen CT, Richmond DJ, Buehler MJ. Bioinspired hierarchical composite
design using machine learning: simulation, additive manufacturing, and
experiment. Mater Horizons 2018;5:939–45. https://doi.org/10.1039/
C8MH00653A.

[21] Delli U, Chang S. Automated process monitoring in 3D printing using
supervised machine learning. Procedia Manuf 2018;26:865–70. https://doi.
org/10.1016/J.PROMFG.2018.07.111.

[22] Holzmond O, Li X. In situ real time defect detection of 3D printed parts. Addit
Manuf 2017;17:135–42. https://doi.org/10.1016/J.ADDMA.2017.08.003.

[23] LeCun Y, Haffner P, Bottou L, Bengio Y. Object recognition with gradient-based
learning. Berlin, Heidelberg: Springer; 1999. p. 319–45. https://doi.org/
10.1007/3-540-46805-6_19.

[24] He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition 2015.
[25] torchvision.models.resnet — PyTorch master documentation n.d. https://

pytorch.org/docs/stable/_modules/torchvision/models/resnet.html#resnet50
(accessed June 23, 2019).

[26] GitHub - kliment/Printrun: Pronterface, Pronsole, and Printcore - Pure Python
3d printing host software n.d. https://github.com/kliment/Printrun (accessed
June 23, 2019).

https://doi.org/10.1016/J.MATDES.2017.02.068
https://doi.org/10.1080/19475411.2019.1591541
https://doi.org/10.1016/J.SCRIPTAMAT.2017.02.029
https://doi.org/10.1016/J.SCRIPTAMAT.2017.02.029
https://doi.org/10.1016/j.progpolymsci.2011.11.007
https://doi.org/10.1002/adma.201700060
https://doi.org/10.1002/adma.201700060
https://doi.org/10.1016/J.ADDMA.2017.07.002
https://doi.org/10.1016/j.cad.2015.04.001
https://doi.org/10.1016/S1526-6125(04)70071-7
https://doi.org/10.1016/J.ENGFRACMECH.2017.03.028
https://doi.org/10.1016/J.ENGFRACMECH.2017.03.028
https://doi.org/10.1016/J.JMATPROTEC.2009.05.016
https://doi.org/10.1145/3083157.3092883
https://doi.org/10.1016/j.cad.2007.10.014
https://doi.org/10.1016/J.MEASUREMENT.2015.12.011
https://doi.org/10.1016/J.MEASUREMENT.2015.12.011
https://doi.org/10.1007/s00170-014-5796-5
https://doi.org/10.1007/s00170-014-5796-5
https://doi.org/10.1002/adts.201900056
https://doi.org/10.1557/mrc.2019.49
https://doi.org/10.1038/srep02810
https://doi.org/10.1038/srep02810
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1039/C8MH00653A
https://doi.org/10.1039/C8MH00653A
https://doi.org/10.1016/J.PROMFG.2018.07.111
https://doi.org/10.1016/J.PROMFG.2018.07.111
https://doi.org/10.1016/J.ADDMA.2017.08.003
https://doi.org/10.1007/3-540-46805-6_19
https://doi.org/10.1007/3-540-46805-6_19
https://pytorch.org/docs/stable/_modules/torchvision/models/resnet.html%23resnet50
https://pytorch.org/docs/stable/_modules/torchvision/models/resnet.html%23resnet50
https://github.com/kliment/Printrun

	Autonomous in-situ correction of fused deposition modeling printers using computer vision and deep learning
	1 Introduction
	2 Experimental set-up and methods
	2.1 Training data collection
	2.2 Machine learning algorithm and training procedure
	2.3 Monitoring and self-correction

	3 Results and discussion
	3.1 Validation of the model accuracy
	3.2 Efficiency of the correction system

	4 Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


