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Although fused deposition modeling (FDM) additive manufacturing technologies
have advanced in the past decade, interlayer imperfections such as delamination
and warping are still dominant when printing complex parts. Herein, a self-
monitoring system based on real-time camera images and deep learning algo-
rithms is developed to classify the various extents of delamination in a printed
part. In addition, a novel method incorporating strain measurements is estab-
lished to measure and predict the onset of warping. Results show that the
machine-learning model is capable of detecting different levels of delamination
conditions, and the strain measurements setup successfully reflects and deter-
mines the extent and tendency of warping before it actually occurs in the print
job. This multifunctional system can be applied to assess other manufacturing
processes to realize autocalibration and prediagnosis of imperfections without
human interaction.

Advances in the field of additive manufacturing (AM) have made
it possible for researchers to fabricate multimaterial and multi-
functional designs with complex geometric features in the past
decade.[1–7] Among the numerous 3D printing techniques, fused
deposition modeling (FDM) is one of the most widely used ones
for its easy operation and low cost. A typical FDM process slices a
computer-aided design (CAD) model into thin layers of 2D
patterns, which are then portrayed with extruded polymer
rasters. Despite the advances in FDM technologies, they are
plagued with interlayer imperfections that can cause delamina-
tion and warping, which necessitates a print job to be restarted
and the material used will be wasted. Delamination occurs when
the adhesion between two layers is weak and warping is caused
by the residual thermal strain accumulated during the print-
ing.[8,9] It turns out that these imperfections are largely dictated
by the settings of printing parameters, first-layer calibration, and

model geometry.[10–12] With recent advan-
ces in applying artificial intelligence and
machine learning to materials science
and engineering problems,[13–18] research-
ers have started using machine-learning
algorithms to classify and predict different
printing defections including blob, warp,
and delamination based on the settings
of printing parameters.[19–23] Another inter-
esting approach in the field adopts a new
slicing mechanism which splits prints
into spatially locked bricks to reduce
warping.[24] However, previous works in
literature are not capable of real-time ana-
lyzing or predicting interlayer issues before
they spread into the rest of the build part.
In this work, we have developed a method
based on computer vision and strain meas-
urements to detect and predict interlayer

imperfections such as delamination and warping in printed
parts. Our proposed approach utilizes camera-based images with
deep learning algorithms to classify and detect delamination con-
ditions, and additionally, a novel setup is established based on
strain gauge measurements to measure and predict the tendency
of warping.

The first interlayer imperfection considered is delamination.
As mentioned in the previous paragraph, delamination is mainly
caused by an improper gap between the current nozzle height
and the print, which results in a weak bonding between layers.
Therefore, it has been shown in the literature[25,26] that the key to
solve this issue is to adjust the nozzle offset value properly in the
first place, where the adjustment of this variable is known as the
first-layer calibration. Inspired by the fact that this calibration
mostly relies on the users’ bare eye observation of the extruded
polymer shape at the nozzle tip, we have developed a setup
that mimics the manual calibration through an application of
deep learning. The monitoring setup has a universal serial
bus (USB) Logitech camera attached at the left side of printing
nozzle with an in-house designed and printed camera mount
(Figure 1a). The mount is reinforced on the back of its cantilev-
ered component to minimize vibration during printing. In addi-
tion, the plastic shell of the camera is removed to fit itself in the
limited printing space and provides a near horizontal filming
angle. Since the offset nozzle height of the first layer stays in
the range of 0.1–0.2 mm, a near horizontal view gives a more
clear view to monitor the distance between the nozzle and the
current raster. The offset nozzle height is classified into four cat-
egories: “Highþ,” “High,” “Good,” and “Low.” Since the nozzle
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cannot be adjusted to be lower than the print bed itself, no lower
category is considered in the classification. Images representing
the four categories are shown in Figure 1b, with a scale bar of
5mm. It can be seen that the “High” nozzle height will result
in poor adhesion conditions between the filament and print
bed. Moreover, a “Highþ” nozzle height intensifies the delami-
nation even worse as shown in the red box compared with the
orange one. On the contrary, a “Low” nozzle height causes fila-
ments to be extruded all around due to the restricted space

beneath the nozzle and hence leading to a nonuniform surface
condition shown in the green box.

After defining the condition of the four cases, image data are
then collected during the printing process. Customized first-layer
calibration Gcode file is made which sends commands to the
printer to deposit ten single rasters directly on the print bed.
Each raster is parallel and separated 5mm from each other to
provide the proper angle to balance image capturing quality and
image collecting efficiency. During the image data acquisition,

Figure 1. a) Monitoring system where a camera is attached to the mount in-house designed and 3D printed. b) Images for four cases which represent the
four conditions of nozzle height. c) Image collection and augmentation where yellow box is the area of interest and red dash box is the actual extracting
location. d) Training result of the CNN algorithm based on validation data set. The accuracy converges to 95.5% for the first model (solid line) and 97.8%
for the enhanced model (dashed line). e) The bar plot presenting probability distribution for each category of the testing data set. f ) Nozzle edge detection
and masking the corresponding area in black color. g) The confusion matrix showing testing data set accuracy for each category.
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within each category, nozzle height is adjusted in three levels to
ensure full coverage of the category. The specific values of each
nozzle height are shown in Table 1. It is of note that there is a
0.04mm gap between each category which may be caused by the
print bed not being perfectly horizontal. For each level in one
category, 900 images are captured continuously during the print-
ing of the calibration model (the 10 rasters). Among all the image
data, �5% of them are not useful since they are captured during
the idle transition path between parallel rasters. As there may be
some slight vibration from the camera mount and variation of
the external environment, each image is augmented into four
images with the following details. First, a fixed 224� 224
yellow “extraction box” is chosen as the reference of interest.
Then, a red-dotted square box in the same size is extracted ran-
domly from a uniform distribution (normal distribution was not
chosen as we have no information about the expected position
and the variance) within 10 pixels at the upper-right corner of
the yellow box as shown in cycle 1 (Figure 1c). Finally, the same
extraction procedure is repeated at the remaining three direc-
tions for generality: upper-left, lower-left, and lower-right. To
sum up, each category has around 900� 4� 3¼ 10 800 images
altogether, and 30% of them are randomly picked out as valida-
tion data set, whereas the rest are grouped as training data. To
ensure the applicability of our classification model, testing
images are collected separately on a different day. For each cate-
gory, one raster is printed with the nozzle height adjusting from
level 1 to level 3 uniformly according to Table 1, and a yellow box
representing the focused area is extracted; these images are
treated as the testing data set.

After preparing all the needed image data sets, the training
data set is fed into a convolutional neural network (CNN) model
for training, and the accuracy is evaluated on the validation data
set by the updated model after each epoch. Here, a pretrained
residual network (ResNet) model is applied with its final layer
removed and two layers of fully-connected layer added to scale
down the output to a vector with four elements. The training
procedure terminates when the accuracy of the validation data
set reaches convergence after 40 epochs. The loss and accuracy
against the number of epochs are shown by solid curves in
Figure 1d. The orange curve (solid line) indicates a 95.5% accu-
racy for our classification model based on the validation data set.
Suppose that the 5% of meaningless data are randomly classified
into the four categories with the same probability, the highest
theoretical accuracy achievable is 96.25%, where the rest of
the 3.75% accuracy comes from the three-fourths of the incor-
rectly categorized not useful images.

With the converged trained CNN model obtained, its perfor-
mance is evaluated on the testing data set. The result of the accu-
racy for the testing data set is: “Good”¼ 70.0%, “High”¼ 96.8%,

“Highþ”¼ 97.7%, and “Low”¼ 65.5%. To interpret the low
accuracy on the “Good” and “Low” category, the output vector
is transferred by a Softmax function that normalizes the sum
of the vector elements to 1 and represents the probability of
an image belongs to which category. The mean value of the nor-
malized vector is calculated for each category, and the results are
shown by a bar chart in Figure 1e. Comparing the two data sets,
both “High” and “Highþ” categories reach a high accuracy,
whereas “Good” and “Low” categories have a lower confidence
of accuracy in the testing data set. It can be seen that under
the “Good” category, images have a higher chance to be viewed
as “High” as these two categories are adjacent. Similarly, in
terms of “Low” category, images have a higher tendency to be
regarded as “Good.” One of the reasons attributing to the low
accuracy seen in the “Low” and “Good” categories is that
extrudedmaterials that fall under these two categories are usually
both flat and uniform, making it difficult to distinguish between
the two. The only feature to differentiate between the two cate-
gories is from the raster width and a slight tilt at the margin of
the raster. Whereas when the categories of “High” and “Highþ”
are compared, the lack of feature difference in “Low” and “Good”
can direct the CNN model to fit the noise of the training data. To
resolve the overfitting issue, we hypothesize that the main noise
causing the low accuracy in these two categories can be attributed
to the nozzle condition difference. It can be seen that in the
extracted images (Figure 1c), the nozzle occupies almost half
of the space, and the surface conditions may change differently
after each printing. Filaments, dust, and oil residues may attach
to the nozzle. In addition, the 5% of meaningless data may also
be another source of error in the actual testing process. As a
result, we looked into methods to resolve these two potential
sources that may increase the accuracy of our model.

To further improve our model and structure, the 5% of data
which tend to be blurry images during idle nozzle traveling are
divided out as a fifth category called “Null.” In addition, to elimi-
nate the nozzle condition variation effects, images are prepro-
cessed by using edge detection to mask the nozzle area into a
black color before training and testing (Figure 1f ). The training
results based on the validation data set can be seen in the dashed
curves in Figure 1d. It can be seen in the figure that the accuracy
curve converges faster and better than our previous model, which
increased the overall accuracy from 95.5% to 97.8%. A confusion
matrix that represents the result of the testing data set is shown
in Figure 1g to provide an intuitive interpretation of the distri-
bution. The overall accuracy can be calculated as the average
value on its diagonal which is 91.0%, where the accuracy is
increased by 8.5% compared to the previous model. If the data
are treated as “Valid” and “Null” in two categories, where “Valid”
is the combination of “Highþ,” “High,” “Good,” and “Low”
category, the matrix can be transformed into Table 2. Table 2

Table 1. Three levels of nozzle height for four corresponding categories.

Category

Nozzle height [mm] “Highþ” “High” “Good” “Low”

Level 1 �0.96 �1.04 �1.12 �1.20

Level 2 �0.98 �1.06 �1.14 �1.22

Level 3 �1.00 �1.08 �1.16 �1.24

Table 2. Bisection result of testing data set on improved model.

Predicted class

“Valid” “Null”

Actual class “Valid” 0.98 0.02

“Null” 0.03 0.97
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shows that the model has an accuracy of 97.5% to distinguish
correctly between valid and null images and that the refined
model shows considerable improvement when it comes to deal-
ing with null data and varying nozzle conditions in the image. In
addition, this extra fifth category helps us remove null data on the
fly during the actual implementation of the trained algorithm in
real-time printing situations. Other extrusion-basedmethods and
3D-printing technologies that have layer-by-layer transitions such
as PolyJet and selective laser sintering (SLS) will also have the exis-
tence of null data when taking camera-based images. Therefore,
we believe that our monitoring method of adding an additional
fifth category of null data will be applicable to other systems
and be able to discard on the fly not useful data in real time.

Here, we would like to make a note about the different factors
that may influence the results of our model and our plans for
future work. First, in terms of how geometry or color of the part
may affect the results of our system, we are using a fixed Gcode
file and unchanged white filament that both constrain and stan-
dardize the calibration process. The advantage of this standard
calibration process is that it ensures easy adaptation to other sys-
tems and also reduces the effects of different shapes or colors of
the printed part that is fabricated. Second, the quality of the
image data is believed to be another important parameter within
the model as it is believed that improved image quality will poten-
tially improve the model accuracy by providing more pixel infor-
mation within the same extraction box. To improve the image
quality, enhanced image processing algorithms such as super
resolution (SR) can be applied to further improve the image qual-
ity. SR techniques have been shown in the literature to construct
high-resolution images from several low-resolution ones by
increasing high-frequency components and removing the degra-
dations.[27] These methods will be explored in future work. Third,
the type of filament material and type of printing process, where
different materials will cause disparate features in the image and
the image acquiring location will vary for different types of print-
ing processes. It is believed that our monitoring algorithm will be
applicable to other types of materials (such as acrylonitrile buta-
diene styrene (ABS)) and printing processes as long as the mate-
rials can be extruded or jetted in a layer-by-layer process and
camera-based images can be obtained as a result. An interesting
extension of this work is to apply our machine learning driven
monitoring system to print a variety of different types of materi-
als (from very soft to very stiff ) with different printing processes
(from extrusion-based to binder jetting).

Another interlayer issue in AM includes warping. In this arti-
cle, the method to predict warping is conducted by a setup estab-
lished on the print bed based on strain gauges. First, print bed
tape is peeled off from its plastic protective film and stuck to the
print bed to prevent any contamination. Second, a smaller size of
plastic film (larger than the printing sample) from the last step is
fixed to the print bed tape along its perimeter with super glue as
shown in the light gray layer at the right part of Figure 2a. Third,
the first strain gauge is fixed on the plastic film with the rear half
of it glued exactly on the ring of superglue in the last step. In this
case, any small expansion of the plastic film caused by the print-
ing sample deformation can be detected by the strain gauge. The
cross-sectional configuration is shown in the left part of
Figure 2a. Finally, the third step is repeated at the other side
of the plastic film and is denoted as Strain gauge 2. The detailed

physical dimension of the plastic film and printing object can be
seen in Figure 2b. Since the elongation of the thin film is very
small, a sensitive measuring and signal amplifying system is
needed. Here, a combined application of the Wheatstone bridge
and LM741 amplifier circuit is established and shown in
Figure 2c. During the printing, the voltage signal is collected
by an Arduino microcontroller board and corresponding strain
curve against time is calculated and plotted in real time. The
detail of the circuits and the governing equations are discussed
in the Experimental Section. Nozzle height information is
recorded at the same timestamp via Pronterface,[28] which is
an open-source framework that is able to communicate with
the 3D printer.

With all the measurement settings prepared, two rectangular
blocks with different percentages of infill are printed and two sets
of data are collected. Since warping is mainly caused by the accu-
mulated residual strain as the more layers stack up, the data in
the time domain are then mapped into the layer number accord-
ing to the recorded nozzle height information. Two sets of results
on both Strain gauge 1 and Strain gauge 2 are shown in
Figure 2d,e with a plot of strain against layer number and an
envelope curve fitting of the data. Local maxima and minima
are picked at a certain interval, and polynomial curve fittings
are implemented on those points. Here, we define the amplitude
of strain (Δε) as the difference of the upper boundary (red curve)
and the lower boundary (blue curve). From the plot, it can be
hypothesized that the amplitude of strain is steady for the
50% infill printing object while expanding for the 100% infill
one. To further probe the variation of the strain signal, the ampli-
tude of strain against layer number curve is plotted for both cases
in Figure 2f,g. The warping conditions on strain gauge 1 side are
also shown in the figure at layer numbers 17 and 21. On the one
hand, for the 50% infill printing object, there is no sign of warp-
ing at both layer heights. On the other hand, in terms of the 100%
infill printing sample, slight warping is shown at layer 17 and
severe warping occurs at layer 21. The findings are consistent
with the amplitude of the strain curve, and in other words,
the whole experimental setup is able to show the condition
and tendency of warping according to the amplitude of strain.
Since the accumulation of internal stress during printing is irre-
versible, once a slight warping condition happens, continuing
printing will be a waste of time and material. By setting a thresh-
old, which can be defined as the ratio of current and initial ampli-
tude of strain, a prediction of warping can be realized. Take strain
gauge 1 in 100% infill sample as an example, at layer 17, the
amplitude of strain is about 0.85� 10�3, and the average of first
five layers is taken as the initial value of the amplitude of strain
which is about 0.68� 10�3. Therefore, the ratio between the
aforementioned two values, which equals 1.25, can be regarded
as the threshold of predicting warping. Different from the fluc-
tuating strain pattern of the 100% infill sample, this ratio varies
between 0.90 and 1.20 throughout the entire printing process of
the 50% infill sample. The value of the threshold is indeed depen-
dent on the shape and dimension of the printing sample which
requires further study; therefore, future work includes predicting
warping based on the ratio analyzed from the input of a given
CAD model.

In summary, we have developed a system which is able to
detect and predict delamination and warping issue in real time
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Figure 2. a) The sectional and exploded view of strain gauge setup. b) The physical dimension of the plastic film and printing sample. c) Circuit for strain
gauge measurement, where Wheatstone bridge is on the left and LM741 amplifier is on the right. d,e) Results of strain against layer number plots for 50%
and 100% infill printing sample. Red and blue curves are polynomial fitting of the boundary of strain data. f,g) Plots for amplitude of strain against layer
number with the view of printing sample condition at layer 17 and layer 21 for 50% and 100% infill prints.
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based on the trained machine-learning model and strain measure-
ment. In terms of delamination, we focus our effort on the
calibration of nozzle offset height where our observation model
achieves an accuracy of 97.8% on validation data set and 91.0%
on testing data set. For predicting warping, the strain gauge setup
effectively quantifies the warping tendency of a print. By setting a
threshold of the amplitude of strain, a prediction mechanism of
warping can be realized. Future work involves an autocorrection
first-layer calibration system based on the classification results,
and other sensors such as infrared camera may be adapted for
in situ assessment. The framework developed in this article can
also be potentially applied to other materials and AM systems
to improve the process with less human interaction.

Experimental Section

Experimental Equipment: The 3D-printer used in the experiments was
PRUSA i3 MK3 FDM printer with polylactic acid (PLA) filament and the
model of camera was Logitech C270. The model of strain gauge used
in the measurement was BF120-3AA, and other circuit components infor-
mation are shown in Table 3.

Governing Equations in Strain Gauge Measurement: The circuit is shown
in Figure 2c and related equations were described later. The voltage
difference across m and n in Wheatstone bridge, denoted by Vmn, can
be expressed by

Vmn ¼
�

R3

R1 þ R3
� R4

R2 þ R4

�
Vs (1)

The right part of the circuit is an ideal difference amplifier, where
R5¼ R8 and R6 ¼ R7. Thus, the output voltage transferred to Arduino
Vout is given by

Vout ¼ R5

R6
Vmn (2)

Plug Equation (1) to Equation (2) and take the variation of R2, the
following is obtained

δVout ¼ R4R5Vs

R6ðR2 þ R4Þ2
δR2 (3)

Given that the gauge factor (GF) is approximately a constant equal to 2
and has the following relationship

GF ¼ ΔR2=R2

ε
� 2 (4)

where ΔR2 is the resistance change of the strain gauge and ε is the strain.
We can finally express the strain in terms of the output voltage difference
and other constant variables as follows

ε ¼ 1
GF

R6 ðR2 þ R4Þ2
R2R4R5

ΔVout

Vs
(5)

where ΔVout is the difference in the current output voltage and initial
steady-state value.
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