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goal of modern engineering applications. 
Recently, with rapid advances in artificial 
intelligence (AI) and computing power, 
machine learning (ML) techniques have 
improved the state-of-the-art in automated 
image classification, natural language pro-
cessing, speech recognition, and many 
other exciting domains.[1] In materials 
science, ML techniques give computers 
the ability to learn structure–property rela-
tionships of materials from experimental 
or simulation data. With proper ML algo-
rithms, suitable material descriptors (e.g., 
configuration, topology, or fingerprint), 
and enough training data, ML models 
could be trained for predicting the pro-
perties of candidate materials. This data-
driven approach has shown high potential 
and wide applicability to accelerate and 
simplify materials discovery and design 
processes in a manifold way. While the 
ML-based methodology for materials dis-
covery and design is still in the early stages 
of research, a large number of attempts 
were made by numerous research groups 
in recent years, in which a wide range of 

applications across length and time scales were considered, 
from atomistic-scale molecular compounds discovery to macro-
scale composite materials design.[2] Most ML-based applications 
in materials science today, however, were dedicated to training 
ML models to predict the property of interest (as outputs) 
using material descriptors (as inputs).[3–6] In those applications, 
the emphasis was almost always on the selection of ML algo-
rithms or material descriptors for mapping an input space to 
an output space. After training, ML models could be used as 
filters to explore a predefined design space in a brute-force 
manner to search for promising candidate materials based on  
some design criteria.[5,6] Needless to say, using ML models to 
predict the properties of new materials is much more efficient 
than synthesizing the materials and measuring their properties 
in a laboratory. This ML-based approach for rapid predictions 
of material properties also has computational advantages over 
physics-based modeling tools, such as density functional theory 
(DFT), molecular dynamics (MD), or the finite element method 
(FEM), by which various material properties can be described 
by solving complex governing equations. Typically, compared to 
physics-based modeling tools, predictive ML models could offer 
computational speedup by several orders of magnitude.[7–9] 
Nevertheless, brute-force screening can only be applied to prob-
lems with a small design space. For more complex materials  
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1. Introduction

Conventional materials discovery and design processes are mostly 
based on expensive, laborious, and time-consuming trial-and-
error approaches. The outcome of this Edisonian-type approach 
not only depends strongly on human intuition and domain 
expertise but also a bit of luck. Consequently, the rational 
design of materials with superior properties is the ultimate 
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discovery and design problems, the number of possible can-
didate materials could easily reach an astronomical number. 
For instance, consider a composite FEM model made up 
of two different base materials. This model needs no more 
than 300 elements (design variables) to make the number of 
possible combinations more than the number of atoms in 
our observable Universe (assumed to be around 1080). Other 
examples can also be found in protein engineering, drug dis-
covery, and others.[10] In a vast design space, it is infeasible to use 
forward modeling tools, even including predictive ML models, 
to explore all possible combinations—no matter how much 
computing power is available or how efficient the forward 
modeling tool is, the enormous complexity makes brute-force 
screening impossible. A fundamental bottleneck is the lack of 
robust inverse design approaches to identify promising candi-
date materials without exploring the entire design space.

For design problems with large numbers of variables to be 
optimized, gradient-based optimization methods (gradient 
descent), such as steepest descent and conjugate gradient, are 
generally very efficient in searching for optimal designs, which 
minimize an objective function subject to a set of constraints. 
Gradient-based optimization methods have been widely applied 
to major engineering industries, in which those methods are 
often referred to as topology optimization. A common goal in 
topology optimization problems is to search for optimal mate-
rial distributions to maximize the performance of structural 
parts such as aircraft and automotive components, buildings, 
and others.[11] Despite the successes of gradient-based optimi-
zation methods, those methods face several challenges when 
applied to materials discovery and design problems: (a) the 
local minima problem. Most optimization problems of interest 
in engineering and scientific fields involve many critical points 
including local minima, saddle points, and discontinuities. 
Gradient descent is known to often get stuck at critical points 
where the gradient has vanished. Therefore, the solutions 
obtained using a gradient-based optimization method may have 
inferior performance due to a bad selection of initial values in 
the optimization, and how to select good initial values is unfor-
tunately quite challenging and problematic; (b) the calculation 
of analytical gradients. For most topology optimization applica-
tions, the goal is often to search for an optimal material distri-
bution to minimize compliance (maximize stiffness) for a given 
loading condition and volume fraction constraint. In those 
problems, the analytical gradients could be calculated using 
adjoint methods.[12] Compared to numerical gradients, analyt-
ical gradients are exact and the calculation requires much less 
computational cost. However, the calculation of analytical gradi-
ents is nontrivial and only possible when knowing the explicit 
form of the optimization problem as well as the governing 
equations and the algorithm that is used to solve the equations. 
Therefore, it is impractical to calculate analytical gradients for 
most materials discovery and design problems. On the other 
hand, finite-difference methods (FDM) are commonly used to 
calculate numerical gradients when the calculation of analytical 
gradients is infeasible. However, the calculation of numerical 
gradients is computationally expensive. Consequently, when 
the number of design variables is large, the calculation of 
numerical gradients is often the bottleneck in the optimization 
and the results are subject to inaccuracies; (c) the availability 

of objective functions. For materials discovery and design 
problems using large-scale materials data and informatics in 
existing databases, such as the materials project, automatic flow 
for materials discovery, open quantum materials database, and 
novel materials discovery,[6,13] even numerical gradients cannot 
be calculated since the objective function in terms of design 
variables does not exist.

In this work, we present a general-purpose inverse design 
approach using generative inverse design networks (GIDNs). 
Autoencoders and generative adversarial networks (GANs)[14] 
are two of the most commonly used and efficient generative 
models. Nevertheless, those generative models by themselves 
face difficulties when it comes to generating designs “better” 
than training samples, making them not suitable for materials 
discovery and design problems. Autoencoders compress a high-
dimensional input (e.g., images) to a low-dimensional vector 
(known as the latent space) and transform the vector back 
into the same dimension as the input. Thus, autoencoders are 
trained to reproduce the training data by learning a low-dimen-
sional representation of the data. Instead of learning how to 
compress data, GANs are trained to generate new data similar 
to training data. However, in materials discovery and design 
problems, the main purpose is to generate new candidate mate-
rials that have better performance than the training samples. 
Both generative models were not proposed for this purpose. 
The proposed inverse design approach uses deep neural 
networks (DNNs) to construct an objective function in terms of 
design variables. This inverse design approach can be applied 
to any materials discovery and design problem. After training, 
the analytical gradients of an objective function with respect to 
design variables are calculated using backpropagation. Unlike 
the computation of numerical gradients using FDM, backprop-
agation uses the chain rule to calculate analytical gradients. In 
materials discovery and design problems, the numerical gra-
dient with respect to each design variable has to be calculated 
individually when using FDM. On the other hand, backpropaga-
tion can calculate all the analytical gradients simultaneously by 
using a forward and backward pass through the neural network. 
It is of note that using backpropagation to calculate gradients 
with respect to input features in DNNs is not a new tech-
nique. Sensitivity analysis using the same technique has been  
regularly applied to identify the most important input features 
in many ML-based applications.[15] For instance, a sensitivity 
analysis was applied to explain the diagnostic prediction of can-
cers[16] and the classification of images by DNNs.[17] Recently, 
the same technique was also applied to generate adversarial 
examples.[18] However, to the best of our knowledge, very few 
attempts were made to design materials using backpropagation. 
While other works in the literature used generative models for 
inverse design,[19] the novelty of the proposed inverse design 
approach includes: (a) it uses random initialization of design 
variables based on a Gaussian distribution to overcome the 
local minima problem. For design problems with large num-
bers of variables, the number of possible combinations could 
be near-infinity but the number of local minima in the design 
space is much less.[20] If we can capture as many local minima 
as possible, the chance to find global minima will be higher; (b) 
it uses active learning to improve the performance of promising 
candidate materials and reduce the amount of training data 
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needed to do so. Deep learning approaches are data-hungry. 
However, preparing a large amount of training data could be 
challenging in many cases. Thus, to obtain better designs using 
less amount of training data is crucial to accelerate materials 
discovery and design processes. A composite design problem 
is chosen as a case study to demonstrate the proposed inverse 
design approach. We compare it with other common optimiza-
tion methods including conventional gradient-based topology 
optimization and gradient-free evolutionary (genetic) algo-
rithms and show advantages of the proposed inverse design 
approach over the other optimization methods.

2. Results and Discussion

2.1. Generative Inverse Design Networks

The framework of our inverse design approach using GIDNs is 
depicted in Figure 1. GIDNs consist of two DNNs: a “predictor” 
and a “designer.” Both DNNs have the same neural network 
structure. The hyperparameters including the number of hidden 
layers and neurons are tuned to balance the prediction accuracy 
and computational cost (see the Supporting Information). The 
predictor is a forward predictive model trained to approximate 
a physics-based model (or an arbitrary function). The learning 
variables in the predictor are the weights and biases connecting 
the neurons in adjacent layers. After training, the values of the 
weights and biases in the predictor are assigned to the designer. 
Unlike the predictor, the designer is an inverse design model, 
in which the weights and biases are no longer learning vari-
ables but constants. The learning variables in the designer are 
set to be the design variables. Thus, the training process for 

the designer becomes a design process to maximize (or mini-
mize) the desired property (or properties). Initial designs with 
values from a Gaussian distribution are fed into the designer 
as inputs. The optimized designs are then generated as outputs 
based on analytical gradients calculated using backpropagation. 
In the feedback loop, the optimized designs are verified by a 
physics-based model and can be added to previous training data 
for the next iteration of training and design processes.

Before applying GIDNs to highly complex design problems, 
we choose a simple function of two variables (so-called the 
peaks function) as an example to demonstrate the proposed 
inverse design approach. The formula of the peaks function is
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To understand the functional space of the peaks function, its 
landscape and contour are shown in Figure 2a,b, respectively. 
As can be seen in the figures, the peaks function has a global 
minimum (near x = 0.23, y = −1.63) and several critical points. 
To search for the global minimum without exploring the entire 
functional space, a common approach is to use gradient descent, 
in which gradients can be calculated numerically using FDM. 
However, gradient descent is known to be limited by the local 
minima problem. Therefore, the optimization solution would 
vary with the selection of the initial point where the optimiza-
tion starts with. For instance, when choosing the origin point 
(x = 0, y = 0) as the initial point, the optimization solution 
using gradient descent is most likely to get stuck at a nearest 
critical point (x = 0.29, y = 0.32) as shown in Figure S1 in the 
Supporting Information. Here, we apply GIDNs to search for 
the global minimum of the peaks function. The predictor is 
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Figure 1. The framework of Generative Inverse Design Networks (GIDNs). GIDNs consist of two DNNs: the predictor and the designer. In the 
predictor, the weights and biases are learning variables. Those values are optimized to minimize the difference between the ML predictions and ground 
truth. In the designer, the values of the weights and biases are adopted from the predictor and set to be constants. Initial designs generated with values 
from a Gaussian distribution are fed into the designer as inputs and optimized designs are generated as outputs. In the feedback loop, the optimized 
designs are verified by a physics-based model and can be added to previous training data for the next iteration of training and design processes.
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first trained to approximate the peaks function by learning the 
correlation between the input variables (x and y) and output vari-
able (z) in Equation (1). After training, the designer is applied to 
search for the global minimum by using backpropagation starting 
with 1000 random initial points (see the Supporting Information). 
The 3D and 2D visualizations of the solution paths are shown in 
Figure 2c,d, respectively. As backpropagation used in the designer 
is a gradient-based technique, optimization solutions may still 
get stuck at local minima. However, backpropagation calculates 
analytical gradients instead of numerical gradients and thus it is 
much faster than other numerical techniques such as FDM. Con-
sequently, compared to other numerical techniques, GIDNs can 
perform much more optimizations with the same computational 
resource. This computational advantage of calculating gradients 
will be more significant when applying GIDNs to highly complex 
design problems, in which numerical gradients are computation-
ally expensive to calculate. After running 1000 inverse designs 
with different initial values, many of the solution paths are con-
verged to the global minimum (Figure 2c,d), showing that using 
random initialization of design variables is effective for solving 
the local minima problem.

2.2. Inverse Design for Composite Materials

After the success of finding the peaks function’s global min-
imum using GIDNs, we aim to evaluate the performance of the 
proposed inverse design approach on highly complex materials 
discovery and design problems. An ideal material system for 
this investigation needs to have a vast design space as well as 
no human and measurement errors in training data to avoid 
ML algorithms being misled. The case study that we choose to 
investigate is a composite system made up of two base materials 
(stiff and soft) with a volume fraction constraint under Mode I 
fracture. Mode I is a normal-opening mode, in which the ten-
sile stress at the crack tip is normal to the plane of the crack 
and tends to open up the crack. It is the most common fracture 
mode and also the most dangerous one. However, it is found 
that the stress and strain concentration at the crack tip could be 
largely reduced by arranging stiff and soft materials into a spe-
cific topology.[4,8,9] Thus, the toughness of the composite can be 
significantly increased, making it less vulnerable to Mode I frac-
ture. The goal of this composite design problem is to search for 
the optimal design to maximize toughness for a given volume 
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Figure 2. The nonconvex surface of the peaks function and the solution paths obtained using GIDNs. a) The 3D landscape of the peaks function 
shows several hills and valleys; b) The contour plot of the peaks function shows several local minima and maxima in the functional space. The red 
dot represents the location of the global minimum; c) The 3D solution paths obtained by using GIDNs starting with 1000 random initial points. The 
beginning of the solution paths is shown in green and the end is shown in yellow; d) The solution paths shown in 2D. Many of the solution paths are 
converged to the global minimum (red dot).
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fraction of stiff and soft materials. In this composite design 
problem, the geometrical variations of composites can be sys-
tematically generated and their mechanical properties can be 
evaluated using FEM (see Experimental Section and Supporting 
Information). Therefore, in addition to any physical interpreta-
tion or practical application that this case study may provide, it 
can be considered as a general case of nonlinear, nonconvex, 
constrained materials discovery, and design problems.

To understand the complexity of this composite design 
problem, a small composite system with 8 by 8 elements is 
investigated. Each element can be either stiff or soft materials. 
Therefore, the number of possible combinations in this 8 by 8 
composite system is 232 (4294967296) when considering geo-
metrical symmetry. The optimal designs with different volume 
fractions for high toughness were identified using a brute-force 
search in our previous work.[8] Here, the optimal design with a 
volume fraction of 21.875% is shown in Figure 3a. The volume 
fraction is denoted as the number of soft elements divided by 
the total number of elements in a composite. Assuming that we 
decide to generate the optimal design with a volume fraction 
of 25% by adding more soft elements (at symmetric locations). 
This appears like a simple task but it is nontrivial when using 
gradient-based optimization methods. To be able to visualize 
the optimization surface, we only consider three possible stiff 
elements to be replaced with soft elements. Those stiff ele-
ments are at three spatial locations and denoted by Element-1, 
Element-2, and Element-3, written on the element itself 
(Figure 3a). Accordingly, three possible designs with a volume 

fraction of 25% can be generated, which are denoted by Com-
posite-A, Composite-B, and Composite-C, and their toughness 
values are shown in Figure 3a. Note that the toughness values 
reported in this work are normalized by the toughness of a com-
posite made up of all stiff (or soft) material. Thus, the toughness 
values are unit-less. To be able to calculate gradients, we allow 
the modulus of the elements to vary continuously from 100% 
(as the stiff material) to 0% (as the soft material). The optimiza-
tion surface of this composite design problem with a volume 
fraction constraint of 25% is shown in Figure 3b. The objec-
tive value is set to be the negative of the toughness. Therefore, 
searching for the composite design with the maximum tough-
ness value is equivalent to searching for the composite design 
with the minimum objective value in the optimization surface. 
It can be seen in the figure that, depending on the initial values 
adopted in gradient descent, the optimization solution could be 
converged to any of those three possible designs. Consequently, 
in this composite design problem, using gradient descent 
cannot guarantee to find the optimal solution since the problem 
is nonconvex. Note that we use a small composite system and 
only consider three design variables to demonstrate the non-
convex nature of this composite design problem; its complexity 
will only increase with the number of design variables.

Here, we apply GIDNs to this composite design problem. 
To increase the complexity, a larger composite system with 16 
by 16 elements is investigated. This 16 by 16 composite system 
has a vast design space with a total of 2128 (about 3.4 × 1038) 
possible combinations, in which the optimal designs are impos-

sible to identify using a brute-force search. 
Due to the nonconvex nature as discussed 
above, it is also challenging to search for the 
optimal designs using conventional optimiza-
tion methods. Three different volume frac-
tions are considered: 12.5%, 25%, and 50%. 
In the training process, 1 000 000 composite 
designs for each volume fraction are ran-
domly generated and their toughness values 
are calculated using FEM. 800 000 of them 
are used as training samples to train the 
predictor, and the rest 200 000 are used as 
testing samples to evaluate its accuracy. After 
training, the values of the learning param-
eters in the predictor are assigned to the 
designer. In the design process, 1 000 000 
initial designs are generated from a Gaussian 
distribution, in which the mean value is 
set to match a predetermined volume frac-
tion and the standard deviation is set to be 
0.25. The initial designs are then fed into 
the designer as inputs. The outputs of the 
designer are optimized designs, in which 
the design variables are optimized based on 
analytical gradients calculated using back-
propagation. The optimized designs with the 
highest toughness (calculated using FEM) 
for different volume fractions are shown in 
Figure 4a.

The optimized designs in Figure 4a, how-
ever, cannot be guaranteed to be the best 
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Figure 3. A composite design problem with a volume fraction constraint under Mode I fracture. 
a) An 8 by 8 composite system made up of stiff and soft base materials. Stiff and soft materials 
are shown in yellow and blue, respectively. The composite on the top is the optimal design 
with a volume fraction of 21.875% for high toughness. The composites on the bottom are 
three possible designs with a volume fraction of 25%, denoted by Composite-A, Composite-B, 
and Composite-C. The numbers below indicate the corresponding toughness values; b) The 
optimization surface and contour plot of the composite design problem with a volume frac-
tion constraint of 25%. The horizontal axes represent the modulus ratios of Element-1 and 
Element-2 and are denoted by x1 and x2, respectively. The modulus ratio of Element-3, denoted 
by x3, is a dependent variable as the summation of x1, x2, and x3 is 200% due to the volume frac-
tion constraint. The vertical axis represents the objective value, which is set to be the negative 
of the toughness. Composite-A, Composite-B, and Composite-C represent the three boundary 
points in the optimization surface.
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designs (global minima). A strategy to increase the performance 
of outputs generated by the designer is to train the predictor 
with more training samples to increase the prediction accuracy. 
We find that when increasing the number of training samples 
from previously 800 000 to 24 000 000, the top performance 
increases by 1.3%, 5.4%, and 23.4%, for the volume fractions 
of 12.5%, 25%, and 50%, respectively (Figure S2, Supporting 
Information). The relationship between the number of training 
samples and the performance of inverse designs for the 8 by 8 
composite system is discussed in the Supporting Information. 
Nevertheless, preparing more training samples is time-con-
suming and impractical in many applications. Since the goal of 
this composite design problem is to search for high-performing 
designs, the prediction accuracy for low-performing designs 
is less important. For this reason, we use an active learning 
strategy by adding high-performing samples with their tough-
ness values verified by FEM to previous training samples for 
the next iteration of training and design processes. Specifically, 
800 000 of the optimized designs generated by the designer are 
added to previous training samples and the rest 200 000 are 
added to previous testing samples. Thus, in the second-itera-
tion training process, a total of 1 600 000 training samples are 
used to train the predictor and 400 000 testing samples are used 
to evaluate its accuracy. In the second-iteration design process, 
1 000 000 initial designs generated from a Gaussian distribu-
tion are fed into the designer as inputs to generate new opti-
mized designs as outputs. The new optimized designs with the 
highest toughness for different volume fractions in the second-
iteration are shown in Figure 4b.

Compared to the first-iteration designs (Figure 4a), the 
top performance of the second-iteration designs (Figure 4b) 

increases by 8.5%, 10.4%, and 37.2%, for the volume fractions 
of 12.5%, 25%, and 50%, respectively. The result confirms 
our hypothesis that training the predictor with more high-
performing samples can increase the probability for the 
designer to identify better designs. Thus, we repeat this active 
learning strategy in the third-iteration training and design 
processes. The new optimized designs with the highest tough-
ness for different volume fractions in the third-iteration are 
shown in Figure 4c. Compared to the second-iteration designs 
(Figure 4b), the top performance of the third-iteration designs 
(Figure 4c) does not increase much. For the volume fraction 
of 12.5%, the best designs in the second-interaction and third-
interaction are the same. For the volume fractions of 25% and 
50%, the top performance of the third-iteration designs only 
increases by 0.02% and 9.6%, respectively. Note that the third-
iteration designs (Figure 4c) are generated by using the active 
learning strategy to train with 2 400 000 samples, in which 
800 000 of them are randomly generated and the rest 1 600 000 
are high-performing designs generated by the designer. It is 
shown that the optimized designs generated by using active 
learning (Figure 4c) have higher performance than those 
generated by using passive learning to train with 24 000 000 ran-
domly generated samples (Figure S2, Supporting Information). 
Compared to passive learning, this active learning strategy uses 
an order of magnitude fewer training samples and generates 
even better designs.

As a baseline, we compare GIDNs against other optimization 
methods. Here, a gradient-based topology optimization method 
is applied to the same composite design problem. The objective 
function, which is set to be the negative of the toughness, is 
evaluated using FEM and the gradients of the objective func-
tion with respect to the design variables are calculated numeri-
cally using FDM with the central difference approximation (see 
the Supporting Information). The optimized designs generated 
using a gradient-based topology optimization method are shown 
in Figure S3 in the Supporting Information. The performance 
of those optimized designs is approximately 21.3%, 27.7%, and 
58.0% lower than that of the optimized designs generated using 
GIDNs (Figure 4c) for the volume fractions of 12.5%, 25%, and 
50%, respectively. Furthermore, a binary genetic algorithm is 
applied to the same composite design problem. Genetic algo-
rithms were inspired by the natural evolution process and 
commonly used to produce multiple solutions for optimiza-
tion and design problems. The fitness function, which is set to 
be the toughness, is evaluated using FEM (see the Supporting 
Information). As there is no standard technique to consider a 
volume fraction constraint for binary genetic algorithms, the 
volume fraction constraint is removed. The optimizations using 
a binary genetic algorithm are converged after 1000 successive 
generations (Figure S4, Supporting Information) and the opti-
mized designs are shown in Figure S5 in the Supporting Infor-
mation. Although no volume fraction constraint is applied in 
the optimizations (larger design space), the top performance 
of those optimized designs is lower than that of the optimized 
designs generated using GIDNs (Figure 4c). Lastly, we compare 
GIDNs against the ML-based design approach using logistic 
regression in our previous work. The optimized designs for 
the volume fraction of 12.5% reported in our previous work[4] 
are shown in Figure S6 in the Supporting Information. The 
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Figure 4. The inverse designs generated using GIDNs for a 16 by 16 
composite system. a) The inverse designs generated in the first-iteration 
design process for the volume fractions of 12.5%, 25%, and 50% (left 
to right), respectively. The numbers below indicate the corresponding 
toughness values; b) The inverse designs generated in the second-
iteration design process; c) The inverse designs generated in the third-
iteration design process.
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top performance of those optimized designs is 8.1% lower than 
that of the optimized design generated using GIDNs for the 
same volume fraction (Figure 4c).

It is of note that each optimization method has its strengths 
and limitations. Gradient-based optimization methods are effi-
cient for problems with large numbers of design variables but 
can easily get stuck at local minima. Genetic algorithms are 
more suitable for discrete design variables but are inefficient 
for problems with large numbers of design variables. Those 
methods, however, require constantly running physics-based 
simulations (FEM in this case study) to evaluate the objective 
function or fitness function in each optimization step. GIDNs, 
on the other hand, do not require running physics-based simu-
lations during the design process. After training, GIDNs can 
generate optimized designs directly based on the discovered 
hidden patterns and correlations learned from training data. 
Although it is recommended to verify the performance of 
optimized designs after the design process to identify the best 
designs, verification is not required during the design process. 
This advantage would be beneficial to researchers working on 
data-intensive materials research where they mostly do not 
have the facilities to conduct massive materials simulations or 
experiments but have access to large-scale materials data and 
informatics in existing databases. With GIDNs, the researchers 
can propose promising candidate materials based on large-
scale materials data and informatics without conducting any 
new simulation or experiment. The composite design problem 
demonstrated here is focused on mechanical properties; how-
ever, GIDNs can be applied to a wide range of other physical 
disciplines, including fluids, acoustics, thermal, and many 
others.

2.3. Statistical Analysis of ML Results

A statistical analysis is performed to evaluate the performance 
of GIDNs. The results for the volume fraction of 25% in the 
first-iteration training and design processes are shown in 
Figure 5a. As can be seen in the figure, the training and testing 
errors are both very low (0.0021 and 0.0048) and the ML pre-
dicted ranking is close to FEM ranking. The results indicate 
that the predictor has a high prediction accuracy and is not 
over-fitted. The training sample distribution shows that the 
majority of the randomly generated samples used to train the 
predictor have very low toughness. The maximum and mean 
toughness values of the training samples are 61.01 and 1.86, 
respectively. However, the first-iteration inverse designs show 
orders-of-magnitude improvement. The maximum and mean 
toughness values of the inverse designs are 197.50 and 129.54, 
respectively. Note that the histograms of the training samples 
and inverse designs are truncated for clarity and the full histo-
grams are shown in Figure S7 in the Supporting Information. 
Furthermore, the statistical analysis results in the second-iter-
ation training and design processes are shown in Figure 5b. 
As with the first-iteration results (Figure 5a), the training and 
testing errors are both very low (0.00011 and 0.00013). In the 
comparison of the ML predicted ranking and FEM ranking, 
it can be seen that the randomly generated samples and the 
first-iteration inverse designs form two clusters, revealing that 

those two groups of training samples share no overlap. As 
the training samples in the second-iteration contain the first-
iteration inverse designs, the maximum and mean toughness 
values of the new training samples increase to 197.50 and 
65.70, respectively. With more high-performing training sam-
ples, the designer can generate better designs with higher 
performance. The maximum and mean toughness values of the 
second-iteration inverse designs increase to 218.05 and 163.59, 
respectively.

Lastly, the statistical analysis results in the third-itera-
tion training and design processes are shown in Figure 5c. 
As with the previous results (Figure 5a,b), the training and 
testing errors are both very low (0.00012 and 0.00016). How-
ever, it can be seen in the comparison of the ML predicted 
ranking and FEM ranking, the second-iteration inverse 
designs are partially overlapped with the first-iteration inverse 
designs, showing that many of the second-iteration inverse 
designs are not new designs but the same as the first-itera-
tion inverse designs. The reason is that the number of local 
minima is not that many in the design space. Thus, the 
same optimized designs could be generated multiple times 
even starting with different initial designs. As the training 
samples in the third-iteration contain the first-iteration and 
second-iteration inverse designs, the maximum and mean 
toughness values of the new training samples increase to  
218.05 and 98.33, respectively. Although the maximum tough-
ness value of the third-iteration inverse designs increases 
to 218.09, the mean toughness value decreases to 51.27. The 
decrease in the mean toughness value is due to the bias distri-
bution of the training samples. The training samples in the 
third-iteration contain mostly high-performing samples. Thus, 
the models’ prediction accuracy in the high-performing design 
space is improved. However, the prediction accuracy in the low-
performing design space is sacrificed. As the initial designs 
adopted in the design process are randomly generated, they are 
mostly low-performing designs. The low prediction accuracy 
in the early stage of the design process misleads the optimi-
zation paths and causes the low-performing outputs. Thus, 
how to improve the models’ prediction accuracy in the high-
performing design space without sacrificing the prediction 
accuracy in the low-performing design space is an important 
task for future studies. The statistical analysis results for the 
lower (12.5%) and higher (50%) volume fractions are shown in 
Figures S8 and S9 in the Supporting Information, respectively.

3. Conclusions

We present a general-purpose inverse design approach using 
GIDNs. This inverse design approach uses backpropagation 
to calculate the analytical gradients of an objective function 
with respect to design variables. Compared to other numerical 
techniques such as FDM, backpropagation is much faster and 
accurate. Furthermore, this inverse design approach is integrated 
with random initialization of design variables to overcome 
the local minima problem and paired with the active learning 
strategy to improve the performance of optimized designs and 
reduce the amount of training data needed to do so. We apply 
GIDNs to design superior composite materials with high  
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toughness and show that the performance of the inverse 
designs can be improved using the active learning strategy. 
Compared to passive learning, this active learning strategy can 
generate better designs with training data at least one order 
of magnitude less. We compare GIDNs with gradient-based 
topology optimization and genetic algorithms and show that 
GIDNs outperform those methods in our case study. The ver-
satility of this inverse design approach will be useful for a wide 
range of materials discovery and design problems.

4. Experimental Section
Calculations of Composite Properties Using FEM: The toughness 

of a composite is quantified as the amount of elastic energy that the 
composite can absorb prior to failure. The objective function and 
constraints in this composite design problem can be written as

min ( ) ( ) ( ) ( )T
0f E xii i i ix u x k u xx ∑= −  (2)

subject to

E x E x E Ei i i( ) [ ]soft stiff soft= + −  (3)

n
x v

i i
1

1 *∑ = −  (4)

E x x ti i i f i( ) ( ),
2 *ε =  (5)

x i ni0 1, 1, ,≤ ≤ = …  (6)

where f is the objective function to minimize, which is set to be the 
negative of the scaled toughness. x is the vector of n design variables, 
which are independent variables representing the type of base materials 
in each element. Here, the soft and stiff materials are denoted by 0 
and 1, respectively. Esoft and Estiff represent the moduli of the soft and 
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Figure 5. The statistical analysis results of prediction accuracy and inverse design performance. a) The statistical analysis results for the first-iteration 
training and design processes. The subfigures from left to right are the comparison of the ML predicted values and FEM values, the comparison of 
the ML predicted ranking and FEM ranking, and the histogram of the training samples and inverse designs. b) The statistical analysis results for the 
second-iteration training and design processes. c) The statistical analysis results for the third-iteration training and design processes.
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stiff materials, respectively. To be able to calculate the gradients of 
the objective function with respect to the design variables, the design 
variables are set to be continuous with lower and upper bounds of  
0 and 1 (side constraints), respectively. Ei is the modulus of element i 
and ui is the displacement of element i. k0 is the element stiffness matrix 
for an element with unit modulus. v* is the predetermined volume 
fraction. To ensure that the toughness of composites only depends on 
the geometrical configuration of base materials, the toughness of each 
element is set to be the same (independent of its modulus). t* is the 
predetermined toughness for each element. The toughness, strength, 
and stiffness of composites are calculated using FEM. A similar FEM 
analysis was adopted in our previous work.[8] Linear elasticity is assumed 
in this composite design problem and the inclusion of nonlinear 
elasticity, plasticity, and crack propagation is left for future studies. More 
information about the composite models and FEM analysis is described 
in the Supporting Information.

Inverse Design Using GIDNs: The ML models are implemented and 
deployed using TensorFlow.[21] GIDNs consist of two DNNs—the 
predictor and the designer. Both DNNs consist of six fully-connected 
hidden layers with 256 neurons per layer. The activations of neurons are 
described as

a a w bj
l

i
l

i ij
l l

j
l1 , 1 1∑σ ( )= +( ) ( ) ( ) ( )+ + +

 (7)

where a j
l( 1)+  is the activation value of neuron j at layer l+1, which is the 

output of the weighted sum of the lower-layer neurons passed through 
nonlinear activation function σ, wij

l l( , 1)+  is the weight connecting neuron 
i at layer l and neuron j at layer l+1, and b j

l( 1)+  is the bias. The rectified 
linear unit (ReLU) is used as the activation function. The input of the 
predictor is a vector of 128 design variables representing the type of base 
materials in each element and the output is the predicted toughness. 
The predictor has around 360 000 learning parameters. To reduce 
overfitting and improve the generalization of the predictor, the dropout 
regularization with a rate of 0.5 is implemented in the training process. 
The Adam optimizer[22] with a batch size of 10 000 is used to train the 
predictor for 1250 epochs. In the design process, the Adam optimizer 
is also used to update the design variable to minimize the objective 
function based on analytical gradients calculated using backpropagation. 
The objective function in the predictor to minimize during the training 
process is a lost function, which uses the mean squared error (MSE) 
to estimate the difference between the predicted toughness of training 
samples and the actual values calculated using FEM. On the other hand, 
the objective function in the designer to minimize during the design 
process is the negative of the toughness. The design variables in the 
designer are set to be continuous with lower and upper bounds of 0 and 
1 and the mean value is set to match a predetermined volume fraction. 
The outputs of the designer are converted to binary values (0 and 1) 
based on the ranking of optimized design variables. The design process 
is terminated after 100 design loops. Compared to running with more 
design loops, it is found that this early stopping does not change the 
outputs much but significantly reduces the computational cost. The ML 
models are trained using the NVIDIA Tesla V100 and Titan V GPUs.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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