
Vol.:(0123456789)

1 3

Machine Learning‑Based Detection of Graphene 
Defects with Atomic Precision

Bowen Zheng1, Grace X. Gu1 *

 * Grace X. Gu, ggu@berkeley.edu
1 Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA

HIGHLIGHTS

• A machine learning-based approach is developed to predict the unknown defect locations by thermal vibration topographies of graphene 
sheets.

• Two prediction strategies are developed: an atom-based method which constructs data by atom indices, and a domain-based method 
which constructs data by domain discretization.

• Our machine learning model can achieve approximately a 90% prediction accuracy on the reserved data for testing, indicating a prom-
ising extrapolation into unseen future graphene configurations.

ABSTRACT Defects in graphene can pro-
foundly impact its extraordinary properties, 
ultimately influencing the performances of 
graphene-based nanodevices. Methods to detect 
defects with atomic resolution in graphene can 
be technically demanding and involve complex 
sample preparations. An alternative approach 
is to observe the thermal vibration properties 
of the graphene sheet, which reflects defect 
information but in an implicit fashion. Machine 
learning, an emerging data-driven approach that 
offers solutions to learning hidden patterns from complex data, has been extensively applied in material design and discovery problems. In 
this paper, we propose a machine learning-based approach to detect graphene defects by discovering the hidden correlation between defect 
locations and thermal vibration features. Two prediction strategies are developed: an atom-based method which constructs data by atom 
indices, and a domain-based method which constructs data by domain discretization. Results show that while the atom-based method is 
capable of detecting a single-atom vacancy, the domain-based method can detect an unknown number of multiple vacancies up to atomic 
precision. Both methods can achieve approximately a 90% prediction accuracy on the reserved data for testing, indicating a promising 
extrapolation into unseen future graphene configurations. The proposed strategy offers promising solutions for the non-destructive evalu-
ation of nanomaterials and accelerates new material discoveries.
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1 Introduction

Graphene, due to its extraordinary electrical [1–3], thermal 
[4–6], and mechanical [7–10] properties, has been widely used 
as building blocks in high-performance nanoelectromechani-
cal systems (NEMS) [11, 12], stretchable electronics [13, 14], 
supercapacitors [15, 16], among others. However, during the 
growth and processing of graphene the existence of defects is 
almost inevitable, which can compromise the expected perfor-
mances of graphene-based nanodevices. Much research has 
been underway to understand the effect of defects on specific 
graphene properties [17–27]. Given the defect information 
such as size, location, and density, the properties of a defected 
graphene can be evaluated. Nevertheless, obtaining detailed 
defect information at atomic resolution is a difficult task. Ide-
ally, defects such as vacancies can be discovered by examining 
the atomic structure of a graphene sheet. Despite some experi-
mental successes using high-resolution transmission electron 
microscopy (TEM) [28–30], it remains technically challenging 
and involves complex sample preparation procedures to obtain 
an image of graphene at an atomic resolution. As a result, a 
method to reliably detect unknown graphene defects without 
using atomic-resolution probes is appealing.

Compared to elliptical holes and cracks which can be shed 
light on using traditional fracture mechanics, randomly distrib-
uted atomic vacancies have a much more implicit but not nec-
essarily less profound impact on the mechanical properties of 
graphene. Emerging machine learning approaches offer solu-
tions for learning patterns from complex data and have been 
extensively applied in material design and discovery problems 
[31–40]. The power of machine learning-based approaches can 
be fully utilized with a rational selection of features. In this 
problem, because the defect location is a local feature (instead 
of a global feature), data need to be constructed with observa-
tions possessing local information. Collective properties such 
as strength or strain to failure may not be suitable here, because 
defects at different locations can produce the same result, mak-
ing these defect locations indistinguishable [18]. One of the 
simplest observations with local features is the thermal vibra-
tion at room temperature with all edges of the graphene sheet 
clamped, which does not require specific actuations or pre-
cise environment controls. Previous research has investigated 
the effect of defects on the vibrational properties of graphene 
via various technical approaches such as molecular dynamics 
(MD) simulation [41–43], continuum elasticity theory [42, 44, 

45], and Monte Carlo-based finite element method [46]. The 
local amplitudes of thermal vibrations can be affected when 
surrounded by defects, because the absence of atoms changes 
the local boundary conditions of mini-oscillators. Experimen-
tally, to obtain a vibration topography that has a lower resolu-
tion than atomic resolution is less taxing than obtaining an 
image of atomic structures. Low-amplitude mechanical vibra-
tions of graphene can be readily imaged using a scanning force 
microscope [47] or an interferometry [12].

In this study, we propose a strategy to detect unknown defects 
in single-layer graphene sheets using machine learning to over-
come the complicated relationship between thermal vibration 
topographies and defect locations. Trained by tens of thousands 
of thermal vibration topographies calculated by MD simula-
tions, our machine learning model is used to predict defect loca-
tions. From predicting a single-atom vacancy to predicting an 
unknown number of vacancies with an arbitrary distribution, a 
kernel ridge regression model addresses problem by progres-
sively building up the model complexity while maintaining the 
computational cost. Finally, an optimal model with the best pre-
diction capability can be obtained by an extensive hyperparam-
eter tuning. The proposed data-driven defect detection approach 
may contribute to the non-destructive evaluation of a broad vari-
ety of 2D materials and accelerate new material discoveries.

2  Methods

2.1  Molecular Dynamics Simulation

The thermal vibrations of single-layer graphene sheets are com-
puted by MD simulations using the open-source code LAMMPS 
(Large-scale Atomic/Molecular Massively Parallel Simulator) 
[48]. An Adaptive Intermolecular Reactive Empirical Bond-
Order (AIREBO) potential [49] is used to compute the interac-
tions between pairs of carbon atoms in the graphene sheet. The 
AIREBO potential is composed of a REBO term to model the 
short-ranged interaction and a Lennard-Jones (LJ) term to model 
the long-ranged interaction, which can be formulated as Eq. (1):

where E is the total potential energy accounting for all atomic 
interactions, and EREBO

ab
 , ELJ

ab
 term the REBO potential and 

the LJ potential between atoms a and b , respectively. In 
the REBO potential, two cutoff distances in the switching 

(1)E =
1
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function control the bond-breaking behavior, which are by 
default 1.7 Å and 2.0 Å [49]. For simulations in this study, 
the value of the smaller cutoff distance is modified to 1.92 Å 
to accurately capture the mechanical behavior of graphene 
benchmarked by DFT calculations, a practice that has been 
validated by many previous studies [50–53]. The cutoff dis-
tance of the LJ term is 6.8 Å. Periodic boundary conditions 
are applied to two in-plane dimensions, and a fixed boundary 
condition is used in the orthogonal out-of-plane dimension. 
The box size is Dx × Dy × Dz = 70 Å × 70 Å × 25 Å, where 
Dx , Dy , Dz are the lengths of the box in x , y , z directions, 
respectively. The integration time step is 1 femtosecond. 
An ensemble of random velocity at T = 300K is generated 
throughout the graphene sheet. Graphene sheets are firstly 
relaxed in the canonical (NVT) ensemble at T = 300 K for 
10 ps. Then, the simulation is run in the isothermal–isobaric 
(NPT) ensemble with the Nose–Hoover thermostat [54] at 
the same temperature for 30 ps for graphene sheets to vibrate. 
The sampling frequency of atom displacement is 20 THz. The 
size of vacancy-containing graphene sheets is LZ = 52.1 Å by 
LA = 44.8 Å, where LZ and LA denote the zigzag and the arm-
chair dimensions, respectively. The graphene sheet consists of 
966 atoms when no defect is present. To enforce the boundary 
conditions, a 3-atom-wide stripe on each edge is set fixed by 
eliminating all degrees of freedom of the associated atoms, 
while the rest of the graphene sheet, composed of 38 rows 
and 19 columns of atoms, is free to vibrate. This boundary 
control resembles the experimental setup in Ref. [47], where 
the graphene sheet is clamped and suspended to vibrate with 
no substrate involved. Simulation temperature is chosen as 
the room temperature T = 300 K , which requires the least 
temperature control in a potential experimental setup and can 
produce a sufficient vibration intensity. A location in the gra-
phene sheet is indexed as (i, j), where i and j represent the 
ith row and the jth column, respectively. A vacancy can be 
referred to by the index of the location where an atom is miss-
ing. The size and the boundary conditions of graphene sheets, 
and the strategy of location indexing are illustrated in Fig. 1a. 
The easily satisfied loading conditions make both numeri-
cal and experimental approaches promising. For a pristine 
graphene sheet of this size and subject to the same boundary 
conditions, the amplitude of vibration is ~ 0.3 Å, which agrees 
well with quantitative results in Ref. [55]. The distribution of 
atom out-of-plane displacement during the thermal vibration 
of a pristine graphene sheet is provided in Fig. S1, where the 
graphene sheet is non-planar while vibrating.

2.2  Data Preparation for Machine Learning

Training and testing data for machine learning implementa-
tions are prepared and organized into the following three 

levels: atom level, structure level, and data level. On the 
atom level, the time series of the out-of-plane displacement 
z(t) of each atom is firstly computed. Then, a fast Fourier 
transformation is performed on z(t) to obtain the frequency 
response z(f ) . Next, the vibrational energy is calculated by 
S(f ) =

∞

∫
0

|z(f )|2df  , as a scalar to featurize each atom. Onto 

the structure level, an energy distribution throughout the 
graphene sheet is obtained by associating the energies of all 
atoms with their coordinates. Next, the 2D energy distribu-
tion is compressed to a 1D energy vector for the machine 
learning implementation. The energy vectors are based on 
atom indices, and the coordination information is sup-
pressed. Finally, onto the data level, a total of near 20,000 
energy vectors are prepared as the machine learning data and 
are assembled into a design matrix. The above procedure of 
data preparation is shown in the flowchart in Fig. 1b.

Among all presentations, the 2D energy distribution offers 
the best visualization. An example is provided in Fig. 1c, 
where the graphene sheet hosts a single-atom vacancy 
(18,11). As can be seen, the energy distribution is highly 
dependent on the location of vacancy: the vibrational energy 
tends to localize at defected regions. However, it is notewor-
thy that around the vacancy is not the global energy maxi-
mum, but a local maximum. The existence of vacancies 
creates additional local energy maxima off the energy distri-
bution of pristine graphene, as is shown in the examples in 
Fig. S2. An energy vector compressed from the previous 2D 
energy distribution is illustrated in Fig. 1d, where the atom is 
indexed as N = 19(i − 1) + j . The energy vector reveals that 
one single-atom vacancy can produce not one but multiple 
characteristic spikes, which is not the most obvious in the 
2D energy distribution. In addition, energy vectors, though 
less intuitive compared to energy distributions, offer another 
perspective and can be correlated with the original graphene 
structure. Considering each hexagonal ring of atoms as a 
unit, the graphene sheet can be divided into 9 rows of rings 
(RoRs) (the first and the last rows of atoms excluded). Each 
RoR is represented by a hump on the energy vector. Atoms 
surrounding the vacancy give rise to spikes on the humps that 
these atoms are associated with. For example, rows that are 
marked by two arrows in Fig. 1d are affected by the vacancy 
(18,11), hosting characteristic spikes. Atoms next to the fixed 
boundary exhibit low vibrational energy, as is the case for the 
first and the last row of atoms. Nevertheless, a vacancy in 
these atoms can still stimulate spikes, of which an example 



 Nano-Micro Lett.          (2020) 12:181   181  Page 4 of 13

https://doi.
org/10.1007/s40820-020-00519-w

© The authors

is provided in Fig. S3. This enables our machine learning 
approach to also predict vacancies next to the clamped edges.

3  Results and Discussion

3.1  Atom‑Based Prediction of a Single‑Atom Vacancy

The prediction of a single-atom vacancy, as the simplest 
case for the vacancy prediction, is developed first. The 
construction of energy vectors (featurized sample points) 
and label vectors is based on atom indices. The length of 
the energy vector is 722 − 1 = 721 because of the one 
missing atom. All entries indexed after the missing atom 
need to be shifted accordingly. For example, if the 100th 
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Fig. 1  Descriptions of graphene sheets with vacancies and the procedure of data preparation. a Schematic of the defected graphene sheet and 
vacancy indexing, where a graphene sheet containing vacancies (6,6), (27,8), and (36,17) is used as an example. b Route of data preparation. c 
2D energy distribution of graphene sheet with a vacancy (18,11), fixed atoms on the edges are not included in the contour plot. d 1D energy vec-
tor compressed from the 2D energy distribution and its correlation with the original graphene lattice

location corresponds to a vacancy, the energies of 101st to 
722nd atoms are 100th to 721st entries of the energy vec-
tor. Label vectors are one-hot encoded, the length being 
the total number of possible atom locations. For example, 
if the mth location is a vacancy while others are occupied 
by atoms, the mth entry is 1 while other entries are 0’s. 
Despite that one-hot labels often work well with classifica-
tion models, in this study they become infeasible due to 
the excessively many classes. For the scenario of a single-
atom vacancy, the number of classes totals 722 (38 
rows × 19 columns). For up to 10 vacancies, the number of 

classes grows to 
∑10

r=1

�
722

r

�
≅ 1.01 × 1022 , which goes 

far beyond realistic. Hence, a regressor is used to map 
energy vectors to one-hot labels. Kernel ridge regression 
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model is selected to predict locations of vacancies, which 
enables us to progressively build up the model complexity 
without adding to the computational cost (the kernel trick). 
Hyperparameters include polynomial kernel degree p and 
regularization parameter � . Algorithmic details of kernel 
ridge regression are provided in Table 1.

Because there are in total 722 possible locations that are 
candidates to host a single-atom vacancy, to achieve an effec-
tive training process, all these possible locations need to be 
visited. Therefore, a total of 722 different configurations 
need to be simulated to survey all scenarios of the single-
atom vacancy. Structured as the energy vector in Fig. 1d, 
results of 23 sets of 722 configurations (722 × 23 = 16,606 
energy vectors in total) are prepared as data. The only differ-
ence between sets is the seed of random number generator of 
initial velocities, which ensures the data free from duplica-
tion or being a linear combination of any other data sets; 22 
sets of data are used for training and validation, which, after 
random shuffling, are split into 80% for training and 20% for 
validation. An individual data set is set aside for testing. It is 
critical that the test data are not from shuffling and splitting 
from a large data set, but completely new, unseen data. A 
good performance on the test data can indicate promising 
extrapolation into future new sample points.

To illustrate, an energy vector from the test set, nor-
malized by its maximum entry value Smax , is shown in 
Fig. 2a. The outstanding spike indicates that the vacancy 
potentially resides in its vicinity. The predicted label 

vector �̂ from the energy vector is shown in Fig. 2b, where 
v = argminN∈{1,2,…,722}

||ŷN − yN
|| is to be returned as the 

predicted vacancy location. To retrieve a better intuition 
from the prediction, �̂ is converted to 2D, as is shown in 
Fig. 2c where the predicted vacancy location stands out. 
Prediction accuracies � on the validation and the test data, 
as a function of regularization parameter � , are shown in 
Fig. 2d. For 𝜆 < 10−5 , the validation accuracy is above 
95% and the testing accuracy lies slightly below 95%, 
indicating a highly effective machine learning prediction. 
For a stronger regularization, for example, � = 10−3 , the 
validation and the testing accuracies drop down to below 
80% and 75%. Figure 2e shows the predicted label vector 
when � = 10−3 . Although the noise level gets suppressed 
by a strong regularization, ŷv becomes less preeminent, 
which explains the lowered prediction accuracies. Because 
both the validation and testing accuracies converge as � 
decreases, for this problem the machine learning model is 
not subject to high variance-related issues.

3.2  Domain‑Based Prediction of Multiple Vacancies 
with an Arbitrary Distribution

The atom-based method, despite a high prediction accu-
racy on the test set, becomes infeasible to predict multi-
ple vacancies of an unknown quantity or density. This is 
because the length of energy vectors 722 − nV is no longer 

Table 1  Machine learning algorithm details

Algorithm Kernel ridge regression a

1: Normalize each energy vector � with its L2 norm, � ← �∕‖�‖2.

2: Center each energy vector � with the mean of all energy vectors 
� =

1

n

n∑
i=1

�i , � ← � − �.

3: Objective function J(W) = ‖XW − Y‖2 + λ‖W‖2 , where X =
[
�1 ⋯ �n

]T is the design matrix; W is the weight matrix; 
Y =

[
�1 ⋯ �n

]T is the label matrix.
4: Normal equations 

(
XTX + �I

)
W = XTY .

5: Write W as a linear transformation of sample points W = XTA , where A is the dual weight matrix.
6: Objective function rewritten as J(A) = ‖XXT

A − Y‖2 + λ‖XT
A‖2.

7: Normal equations rewritten as 
(
XTX + �I

)
A = Y .

8: The polynomial kernel of degree p is k
(
�1,�2

)
=
(
�
T

1
�2 + 1

)p.
9: Construct kernel matrix K , ∀i, j , Kij ← k

(
�i, �j

)
.

10: Solve (K + �I)A = Y for A.

11: Predict labels for the design matrix of test data Z =
[
�1 … �n�

]T ( �i ’s are normalized, centered testing energy vectors), 
Ŷ =

[
�̂1 … �̂n�

]T
= h(Z) = K�A , where K �

ij
= k

(
�i, �j

)
.
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a constant, where nV is the number of vacancies. More 
importantly, the atom-based method still requires counting 
atoms, which is not viable without an atomic-resolution 
probe. To circumvent this issue, an approach based on 
domain discretization is proposed, aiming to predict sub-
domains that contain one or more vacancies instead of the 
locations of missing atoms. The domain of free vibrating 
atoms is discretized into NR-by-NR uniform subdomains, 
as is shown in Fig. 3a. Similar to the indexing strategy of 
the atom-based method, the index of a subdomain can be 
expressed as N∗ =

(
iR − 1

)
NR + jR , where iR and jR are 

the row index and the column index of a particular sub-
domain. Furthermore, when the size of the subdomains is 
substantially small, an atomic-resolution prediction can be 
approached. Notably, the domain-based method is compu-
tationally cheaper compared to the atom indexing-based 
method. For instance, for a graphene sheet with 722 freely 
vibrating atoms, the atom-based method renders each sam-
ple point 722 − nV features. For domain-based method, the 
number of features is N2

R
 (for a 14-by-14 discretization, 

the number of features is  142 = 196), thus achieving a 

dimensionality reduction by a multiple of 722∕N2
R
 . Label 

vectors are one-hot encoded based on subdomains instead 
of atom indices, length being N2

R
 : if the sth and tth sub-

domains contain a vacancy, the sth and tth entries of the 
energy vector are 1’s while the other entries are 0’s. Unlike 
the atom-based method, no index shift is involved.

As an immediate check for effectiveness, the same data 
used for the atom-based method are discretized and used 
to test the domain-based method: a good performance on 
the single-atom vacancy scenario must be achieved in order 
to proceed into predicting unknown multiple vacancies. To 
illustrate, the atom-based energy vector in Fig. 2a is con-
verted to a domain-based energy vector. Figure 3b, c shows 
2D and 1D presentations of the domain-based sample points 
with an 18-by-18 discretization, while Fig. 3d, e corresponds 
to a 10-by-10 discretization. Energy vectors of the domain-
based method have less outstanding characteristic spikes 
compared to the atom-based counterpart, making defected 
regions almost indiscernible by an “eyeball” test and poten-
tially adding to the difficulty of prediction.
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To quantify the robustness of prediction, a margin is 
defined as h = minN∗∈V

||ŷN∗
|| −maxN∗∉V

||ŷN∗
|| , where V is the 

set of indices of vacancy-containing subdomains. A large 
margin indicates that the machine learning model is less 
likely to confuse defected subdomains with pristine ones. � 
is kept small, set as 10−10 . Input with the energy vector in 
Fig. 3c, the predicted label vector of machine learning model 
with a linear kernel is shown in Fig.  4a. Although 
v = argminN∗∈{1,2,…,N2

R}
||ŷN∗ − yN∗

|| can still correctly return 
the defected subdomain, the margin becomes particularly 
small and ||ŷv − yv

|| becomes large, making predictions less 
reliable. To reduce the bias, polynomial kernels of higher 
degree are implemented. The predicted label vectors of 
quadratic and cubic kernels are shown in Figs. 4b, c. The 
margin is profoundly enlarged and ||ŷv − yv

|| is sufficiently 
small for both cases, indicating a reliable prediction and a 
reduced bias. Little difference is observed between the pre-
dicted label vectors of quadratic and cubic kernels, indicat-
ing that a quadratic kernel already suffices to address the 
domain-based problem. A 2D presentation of the predicted 
label vector is provided in Fig. 4d, as a visualization with the 
best intuition. Validation and testing accuracies with kernel 
degrees p ∈ {1, 2, 3} , as a function of NR , are summarized 
in Figs. 4e, f. As can be seen, quadratic and cubic kernels, 

which have achieved accuracies over 90% on validation and 
over 80% on testing, are superior to a linear kernel. In addi-
tion, accuracies increase with larger NR , i.e., finer discretiza-
tion, despite some fluctuations in the testing accuracies. The 
effects of � on the validation and the testing accuracies are 
provided in Fig. S4.

Having validated the domain-based method with pre-
dicting a single-atom vacancy, the model is used to predict 
locations of multiple vacancies with an arbitrary distribu-
tion. Data are prepared by the following way. The number 
of vacancies nv is a random integer from 1 to 10. Specifi-
cally, nv ∼ U(1, 10) , where U(⋅) denotes a uniform distribu-
tion. The index of each vacancy is a pair of random inte-
gers corresponding to all possible atom locations, i.e., 
iR ∼ U(1, 38) and jR ∼ U(1, 19) . This vacancy generation 
algorithm naturally does not rule out the existence of 
vacancy clusters, which free us from the issue of distin-
guishing between vacancy clusters and individual single-
atom vacancies if the prediction is successful. This prop-
erty is especially advantageous when the defect 
information is unknown a priori in an experimental setting. 
A total of 19,438 domain-based energy vectors are pre-
pared by MD simulation, of which 80%, 10%, and 10% are 
used as training, validation, and test data, respectively. 
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Each graphene configuration has a different seed of ran-
dom number generator for the vacancy setup. Each simula-
tion case also has a different seed for initial velocities. 
Once again, training and validation data are shuffled 
together and split into two sets, while the test data are not 
involved in any shuffling and splitting to be used as new 
data. Because of the unknown number of vacancies, 
returning argminN∗∈{1,2,…,N2

R}
||ŷN∗ − yN∗

|| or the indices of 
the k smallest ||ŷN∗ − yN∗

|| as the predicted subdomain indi-
ces is no longer feasible. To this end, a threshold param-
eter � is introduced and the set of indices of predicted 
defected subdomains can be obtained as V =

{
v ∶ ŷv > 𝜏

}
 . 

� is set as 10−10 . An example of energy vectors from the 
test data on an 18-by-18 discretization is shown in Fig. 5a. 
Multiple spikes are exhibited, but there is no intuition 
which of these spikes imply subdomains that contain 
vacancies. The predicted label vector by a quadratic kernel 
and the true label vector are shown in Figs. 5b, c, where a 
large margin is obtained. Given a threshold � within the 
margin, the machine learning prediction returns 9 different 
subdomains that contain at least one vacancy, which are 

proved to be correct predictions by the true label vector in 
Fig. 5c. 2D presentations of the input data point, predic-
tion label, and true label are shown in Figs. 5d–f, respec-
tively, to offer a better intuition. For a sample point on the 
domain-based method, both 1D and 2D presentations have 
lost the ability to implicate locations of vacancies. How-
ever, the machine learning model can still discover the 
vacancies with high accuracy and reliability.

Validation accuracies of kernel degree p ∈ {1, 2, 3} , 
as a function of NR and threshold � , are summarized in 
Figs. 6a–c, respectively. A linear kernel becomes incapa-
ble to predict vacancy locations, of which the best accu-
racy is below 40% and is only attainable when subdomain 
size is sufficiently small (for example, NR = 18 ). However, 
for both quadratic and cubic kernels with an optimal �∗ , 
validation accuracies above 80% can be achieved for NR 
values ranging from 10 to 18. As NR increases, validation 
accuracy increases and �∗ can be chosen within a broader 
range centered at near 0.4. Testing accuracies of kernel 
degree p ∈ {1, 2, 3} , as a function of NR and threshold 
� , are shown in Figs. 6d–f, respectively. Trends in gen-
eral resemble validation accuracies, but with a lower 
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magnitude overall. Finally, prediction accuracies on vali-
dation and testing with optimal threshold values �∗ are 
summarized in Figs. 6g, h. As NR increases, the valida-
tion accuracy approaches 100% and the testing accuracy 
approaches 90%, suggesting a potent performance of locat-
ing multiple unknown vacancies in graphene sheets. The 
effects of � on the validation and the testing accuracies 
with � = 0.4 are provided in Fig. S5.

Both the atom-based and the domain-based methods 
can predict the locations of unknown vacancies with high 
accuracy. However, the latter is in general advantageous 
for multiple reasons. First, the domain-based method does 
not require an atomic-resolution probe, while the atom-
based method does. Second, the domain-based method can 
predict an unknown number of vacancies, which makes 
it a more natural way to approach the problem. On the 
contrary, the atom-based method can only predict the 
vacancies of a known number, which poses an outstanding 
limit. Last but not least, the domain-based method enjoys 
cheaper computational cost and thus a faster training 
speed, due to the dimensionality reduction by discretiza-
tion. Despite the fact that in order to achieve an over 90% 
prediction accuracy, the domain-based method requires 

at least a quadratic kernel while the atom-based method 
only needs a linear kernel, the kernel trick ensures that 
the computational costs of kernels of different degrees are 
generally equal. These advantages make the domain-based 
method more practical than the atom-based method for 
applications of interest. In an experimental setting, gra-
phene samples can be fabricated by mechanical exfolia-
tion following Ref. [47], which are relatively free of con-
tamination such as oxygen-containing functional groups. 
For graphene sheets contaminated by foreign functional 
groups, based on the presented method these functional 
groups can be treated as defects and can be potentially 
distinguished from atomic vacancies. Also, it is suggested 
that the contamination layer can be removed by a high 
temperature cleaning process in a  H2/Ar atmosphere, ena-
bling measurements of the properties of contamination-
free graphene sheets [56].

4  Conclusions

In closing, we have provided a machine learning-based 
approach to predict locations of unknown vacancies in gra-
phene. Thermal vibration properties at room temperature 
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are used to featurize graphene sheets, which is shown to 
be effective to reveal the local vacancy information. Two 
prediction strategies are developed, an atom-based method 
which constructs data by atom indices, and a domain-based 
method which constructs data by domain discretization. 
Both strategies are based on a kernel ridge regression, 
which allows us to progressively build up model complex-
ity while maintaining the computational cost. While the 
atom-based method is capable of predicting a single-atom 
vacancy, the domain-based method can predict an unknown 

number of multiple vacancies with high accuracy. Both 
methods can achieve approximately a 90% prediction accu-
racy on reserved test data, indicating a good extrapolation 
into unseen new graphene configuration. A dimensionality 
reduction is also achieved by domain discretization. The 
proposed machine learning-based approach shows a predic-
tion capability beyond analytical and numerical modeling 
and can be further enhanced by the improvement in quality 
and speed of data generation. This strategy may also shed 
light on predicting defects of a broader variety, for instance, 
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interstitials, dislocations, grain boundaries, among others. 
In the present study, graphene sheets are uniformed discre-
tized. Non-uniform discretizations (for example, discretiza-
tions with gradients) or subdomains of irregular shapes are 
interesting studies for future work. Future endeavors also 
include the development and optimization of more complex 
discretization strategies, as well as predicting vacancies in 
multi-layer graphene sheets and other 2D materials.
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