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Progress and Potential

Current additive manufacturing

methods are capable of creating

multi-scale, multi-material, and

multi-functional products that are

difficult to fabricate using

traditional techniques.

Challenges still lie in the mismatch

between theoretical design

expectations and practical

manufacturing capabilities.

Recent research efforts have been

dedicated to solving these

difficulties through traditional

optimization or simulation

methods. In this review, advanced

algorithms for additive

manufacturing are discussed and

potential applications utilizing

state-of-the-art artificial

intelligence methods are

proposed. This paper aims to

provide insights into next-

generation algorithm-driven

additive manufacturing.
SUMMARY

Increasing demand for the fabrication of components with complex
designs has spurred a revolution in manufacturing methods. Addi-
tive manufacturing stands out as a promising technology when it
comes to prototyping multi-functional and multi-material designs.
However, challenges still exist in the additive manufacturing pro-
cess, such as mismatched material properties, lack of build consis-
tency, and pervasive imperfections in the printed part. These
inherent challenges can be avoided by implementing algorithms
to detect imperfections and modulate printing parameters in real
time. In this paper, several algorithms, with a focus on machine
learning methods, are reviewed and explored to systematically
tackle the three main stages of the additive manufacturing process:
geometrical design, process parameter configuration, and in situ
anomaly detection. Current challenges and future opportunities
for algorithmically driven additive manufacturing processes, as
well as potential applications to other manufacturing methods, are
also discussed.

INTRODUCTION

Computers, one of the symbols of the third industrial revolution, have brought

tremendous advances to traditional manufacturing methods. Automated systems

such as computer numerical control (CNC) machining and robotic assembly lines

greatly promote efficiency and consistency in fabrication.1,2 Among these systems,

additive manufacturing (AM), typically known as three-dimensional (3D) printing,

stands out due to its capability of creating complex, multi-material, and multi-func-

tional designs.3–7 This capability is integral in bringing about the fourth industrial

revolution, otherwise known as Industry 4.0, aimed at advancing manufacturing

through data and machine intelligence.

A typical AM manufacturing workflow starts at the design stage wherein computer-

aided design (CAD) software is used to create a CAD model of the part of interest.

The design may impose constraints on the 3D-printing process, such as resolution

limitations and the need for support structures for overhanging structures (discussed

in the Geometrical Design section). The CADmodel is then sliced to produce partial

instructions defining the geometry and then fed into the 3D printer to make the part.

In order to complete these instructions, a set of 3D-printing process parameters

need to be specified. As such, process parameters are oftentimes manually adjusted

and corrected based on the condition of the outputted product. However, this trial-

and-error process largely depends on the experience of the operator to recognize

anomalies and, subsequently, make corresponding corrections of process

parameters, resulting in a tedious and inefficient procedure while various defects

may be generated throughout the printing process. Additionally, the multitude of
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combinations of process parameters has a big impact on the final quality of the

product.

To resolve the abovementioned issues, considerable studies have been conducted

to optimize the manufacturing process using simulation, high-throughput experi-

ments, and sensor technologies.8–10 For example, topology optimization (TO) is

used to create designs with given constraints and objective functions to maximize

material performance in the continuum scale11,12 and nanoscale.13 Simulations are

developed for various AM methods to understand the effects of different combina-

tions of process parameters.14,15 Additionally, machine learning (ML) and computer

vision models are developed to study the relationships between process parameters

and product quality.16,17 These techniques have the potential to create the next gen-

eration of smart, low-cost, and efficient AM systems.

This review highlights recent studies of algorithmically driven AMprocesses with a focus

on three central aspects: (1) geometrical design, (2) process parameter configuration,

and (3) in situ anomaly detection. Considering the algorithms behind some of these

AM systems, ML methods are of special interest for their advanced capability in discov-

ering rules and learning principles behind data based on underlying patterns and

features. Generally, there are three major types of ML algorithms: supervised learning,

unsupervised learning, and reinforcement learning. Supervised learning uses models

based on labeled training data to predict the desired output. Typical methods, including

support vector machine (SVM) and Gaussian processes (GP), can be applied for classifi-

cation and regression problems.18,19 Unsupervised learningmethods, such as clustering

and self-organizing map (SOM), are advantageous to be applied to problems that have

no pre-existing labels on their dataset.20,21 These methods aim to minimize human su-

pervision during problem solving whilemaintaining satisfactory performance. Reinforce-

ment learning (RL) focuses on learning from the consequence (reward or punishment) of

actions in the state of an environment to achieve the maximum award. RL has shown its

powerful capability in board games (e.g., Go) and the field of autonomous vehicles.22,23

Besides the simple regression and SVM methods, there are other widely used models

called neural networks (NNs). NNs imitate the idea of biological NNs and have learnable

network parameters determined through iterative training processes. Due to the ability

to construct complicated structures in themodel, NNs havebeen actively adopted in im-

age recognition, natural language processing, and many other different areas.24,25

An overview of this paper is shown in Figure 1 to highlight the details and connections

between each stage of the AM process as well as various algorithms used in AM appli-

cations. This paper is divided into several subtopics of interest, which are organized as

follows. In the geometrical design section, TO and ML methods are discussed and

compared with one another. In the processing parameter configuration and in situ

anomaly detection sections, conventional approaches such as genetic algorithm and im-

age processing methods as well as ML methods are discussed with detailed literature

examples. In the discussion section, an overview table is included todiscuss the specialty

of various ML algorithms in different AM applications. Finally, current challenges and

future opportunities of ML algorithms are explored in terms of the above three stages

in the AM process as well as potential applications to other manufacturing methods.
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GEOMETRICAL DESIGN

As the first step in the manufacturing process, designing a high-performance part

that meets the application’s requirements is critical. AM enables the building of

complex lattice structures with different material distributions. AM does come
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Figure 1. Schematic Showing the Connections between the Three Main Stages of Additive

Manufacturing (Geometrical Design, Process Parameter Configuration, and In Situ Anomaly

Detection) and Various Algorithms
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with unique challenges of its own, such as overhang structures that require addi-

tional support, known as support structures. In this section, TO and ML methods

for part design are discussed, examining recent studies, current challenges, and

future perspectives.

TO for AM

TO has been attracting enormous attention since the late twentieth century for mini-

mizing material requirements and boasting higher generality than conventional

parametric design methods.12 TO in conjunction with AM, however, faces many ob-

stacles. Support structures are intrinsic to the AM process and need to be explicitly

included as an extra constraint in TO. For most polymer andmetal 3D printers, a sup-

port structure is needed for any overhangs that exceed a threshold angle from the

vertical printing direction. Support structures are usually removed manually, which

increases labor and time costs. One approach to tackle this issue is to force the opti-

mized design to be self-supported by introducing the overhang angles as a penalty

term, which has a large coefficient in the loss function or is regarded as domain con-

straints for the design space.26–29 As illustrated in Figure 2A, an overhang detection

method has been developed which applies linear regression at all solid-void inter-

faces. Thereafter, any downward-facing edge that has a slope larger than the

threshold would heavily penalize the objective function.11

However, self-supporting constraints can often substantially limit the space of prac-

tical designs.37 As a result, researchers have attempted to achieve a balance be-

tween unconstrained and self-supporting TO approaches by introducing the amount

of support structure and removal effort as soft penalties to the objective with small

tunable coefficients.30,38,39 One proposed approach for constrained support TO

starts by first solving it within the unconstrained design space. The solution is then

iteratively updated to minimize the tradeoff between the objective and soft pen-

alties. Unnecessary cavities are removed from the original model, which substantially

reduces the required amount of support material,30 as seen in Figure 2B.

TO also enables the fabrication of complex lattice structures with the same time ef-

ficiency as bulk structures in AM. In the solid isotropic material (SIM) approach, which
Matter 3, 1541–1556, November 4, 2020 1543



Figure 2. Topology Optimization and Machine Learning Design for 3D-Printed Materials

(A) Approximating the slope of the downward-facing edges through a linear fit for each iteration of TO. Adapted with permission from Brackett et al.11

Copyright 2011, Solid Freeform Fabrication Symposium.

(B) The printed bracket requires much less support after adding a support penalty in the objective function. Adapted with permission from

Mirzendehdel and Suresh.30 Copyright 2016, Elsevier.

(C) AM allows for an optimized design to have a distribution of different lattice structures. Adapted with permission from Cheng et al.31 Copyright 2018,

Elsevier.

(D) AM allows for an optimized design to contain multiple materials, and thus, achieve better objective values. Adapted with permission from Vogiatzis

et at.32 Copyright 2017, Elsevier.

(E) The simulated and ML-predicted glass formation ability within the Ni-Al-Zr ternary. Adapted with permission from Ward et al.33 Copyright 2016,

Springer Nature.

(F) The design of a DM can be fed into an ML model by encoding different material voxels as different feature numbers. Adapted with permission from

Gu et al.34 Copyright 2018, Royal Society of Chemistry.

(G) A sample DM with each voxel representing different cell structures. Adapted with permission from Wilt et al.35 Copyright 2019, Wiley-VCH.

(H) DM sensitivity analysis from linear models predicting toughness (left) and strength (right). Adapted with permission from Gu et al.36 Copyright 2018,

Elsevier.
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takes the mass densities of material elements as design variables, optimized designs

are sometimes screened to eliminate any intermediate-density regions, which are

not physically existing materials. Using TO, these regions can now be represented

as small-scale lattice structures with intermediate properties, greatly expanding

the design space.31,40–42 For example, Cheng et al.31 considered intermediate-den-

sity regions as cubic lattice structures with a corresponding material volume fraction

when optimizing the structure of a cooling channel. The material properties of such

lattice structures are then computed through the homogenization of the representa-

tive volume elements.31 As a result, the final design with optimized cooling function-

ality contains regions with graded lattice structures, as seen in Figure 2C. Moreover,

this approach can be further extended to a multi-scale problem where the micro-

structures are optimized concurrently with the global geometry instead of selecting

from a set of predetermined lattices.43–45

Additionally, with the help of advanced AM technologies (e.g., inkjet and polyjet), com-

posites with intricate material distributions can be created and much success has been

shown in the bioinspired materials community.46,47 Taking advantage of this multi-ma-

terial fabrication ability, researchers have modified the density-based approach so

that the design parameter h describes the similarity of the representative volume

element to the composite constituents or to void.48–50 Similarly, the level-set method,

which iteratively updates the design through a material phase velocity field, can also

be upgraded to optimize composites. Instead of using one phase function to distinguish

solid and void, the multi-material framework uses m level-set functions to represent at

most 2m material phases plus void.32,51,52 Figure 2D demonstrates the results from Vo-

giatzis et al.32 where composites are optimized to achieve negative Poisson’s ratio under

different constituent volume fractions.

ML-Driven Material Design

ML techniques have been attracting great attention for their ability to construct an

analytical mapping from input features to output responses for different problems

of interest. As a result, ML models are often considered as surrogate models that

greatly accelerate the numerical simulation process at the expense of a small predic-

tion bias.53–57 MostMLmodels can be categorized into three groups in terms of their

outputs: regression models, which give real number predictions; classification

models, which give discrete class predictions; and unsupervised clustering models,

which analyze the similarities of data points based on their features. Given the design

information as input features, various ML techniques have been utilized to predict

resultant mechanical and chemical properties, including strength, stiffness, defor-

mation, toxicity, and stability.33,58–62 For instance, Ward et al.33 developed an

ensemble of decision trees that can be developed to predict the bandgap energy,

specific volume, and formation energy under different chemical compositions.33

Their model produced Figure 2E, which shows a comparison between the simulated

and predicted glass formation abilities within the Al-Ni-Zr ternary.33

The input features of an ML model can be extracted in various forms mechanically or

chemically depending on the category of the material of interest. Specifically, for 3D

printed materials, the concept of digital material (DM) was introduced to best repre-

sent complex composites or lattice structures produced by AM. A DM is an assembly

of voxels where each voxel represents a lattice of a material element.63 Thereafter,

each voxel of the DM can be treated as an input feature of the ML model. Through

this DM representation, Gu et al.34 used a convolutional neural networks (CNN) to

predict the toughness of the composite DM. As seen in Figure 2F, different material

voxels are encoded as different input features to match the mathematical form of an
Matter 3, 1541–1556, November 4, 2020 1545
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ML model.34 A similar approach can be applied to predict the deformation of the

entire material system under various unit cell distributions; for example, this can

be used in the design of compliant actuators35 (Figure 2G).

ML approaches utilize analytical forms that can greatly accelerate the prediction and

optimization process in materials design compared with other computational

methods.64 For example, the sensitivity of all material voxels can be computed

from a linear ML model34 that is fitted to predict the composite strength, as seen

in Figure 2H. An evolutionary algorithm is then used to generate top design candi-

dates with the highest strength based on the sensitivities, which measure the impor-

tance of each material voxel.36 Recently, studies have shown that ML can be used as

a promising tool to accelerate the inverse-design process of materials. Inverse-

design approaches generate suitable material designs with a given set of desired

properties or functionality (from property to structure).65–67 For instance, studies

trained an NN with many hidden layers to predict the toughness of DM compos-

ites.68 Then, gradient descent was performed on the NN to maximize the property

of toughness using descent directions computed from backpropagation. Moreover,

theMLmodel actively learns from training data generated around the current design

point to reduce the bias within the local convex hull.68 These studies show that ML

can be used as a promising approach to accelerate the materials design process,

which can be translated into a physical part with advances in AM.
PROCESS PARAMETER CONFIGURATION

After refining the geometrical designs, choosing appropriate process parameters

becomes the next critical challenge in the printing process. Different AM methods

have different sets of process parameters that govern the AM process. For example,

in fused filament fabrication (FFF), where polymers are extruded layer by layer to

create the structure, printing speed, flow rate of the material, and layer height set-

tings are the key parameters in fabrication. Moreover, laser-assisted AM methods

that share a similar layer-based manufacturing procedure, such as laser powder

bed fusion (L-PBF) or sintering, have a different set of critical process parameters,

such as laser power, laser speed, and scan strategy. This section deals with how ge-

netic algorithms (GAs) and ML methods can be used to influence the quality of the

final printing products through the selection of process parameters. Additionally,

justifications for the application of ML are provided as well as related recent litera-

ture on the implementation of ML for optimizing and interpreting the analytical rela-

tionship between process parameters and product quality.
Optimization Through GA

As numerous process parameters are involved in the AM process and each parameter

has a tunable range during fabrication, it is very time consuming to conduct experiments

on every combination of the process parameters. Therefore, efficient methods are

required to find the optimal set of process parameters. Here, GA is introduced for its

wide application in solving optimization problems using biologically inspired operations

to conduct evolutionary updates.69,70 In a GA model, the first parent generation input

set is initialized and then evaluated through a fitness function. If the target criterion

(fitness function) is not fulfilled, operations such as mutation, crossover, and selection

will be conducted to generate the second children generation. This iterative process

will keep reproducing offspring until the objective is reached.

With the GA as a basis, multiple studies have been conducted on applying GA to

optimize the process parameters in AM.71–73 The first example that will be discussed
1546 Matter 3, 1541–1556, November 4, 2020
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is a GAmodel with the design of experiments (DOE) to find the optimal combination

of process parameters that can minimize surface roughness and porosity character-

istics of the printed part. In this study, the prints were created by FFF using acrylo-

nitrile butadiene styrene (ABS) material and the process parameters of interest

were slice thickness, road width, nozzle temperature, and air gap.74 First, DOE

was conducted to get the surface roughness and porosity results from different com-

binations of the four process parameters. Second, based on the experimental re-

sults, response surface methodology (RSM) was applied to get the fitness function,

which was defined as a second-degree polynomial equation of the input variables

(process parameters). Third, GA was applied to the problem to predict the optimal

process parameter set. Conclusions were finally made that the minimum surface

roughness occurs at the smallest value in the defined range of slice thickness,

road width, and air gap with an intermediate nozzle temperature, which matched

with the results of both the GA model and the experimental validation.

In the previous example, the objective of finding the best performance on surface

roughness and porosity is reached independently. However, the multiple aims and

evaluations of the final product are often coupled with each other. Another study

used an advanced multi-objective genetic algorithm (MOGA) to optimize the com-

bined goals in the L-PBF AM method (Figure 3B). The objectives include finding the

optimal processing rate and energy efficiency as well as maximizing or minimizing

the average grain size and the magnitude of columnar gains growth direction.75

TheMOGAmodel followed the same iterative procedure while extending the fitness

function to a 3D coordinate space, where each dimension is a fitness function with its

value determined by the process parameters. The input process parameters studied

in this literature are laser power, scan velocity, hatch distance, and scan strategy. Af-

ter convergence of the MOGA model, conclusions were made as follows. First, finer

grain sizes and less influenced grain growth directions could be achieved if a scan

strategy rotation of 67� is used; increasing laser energy density would lead to larger

grain sizes. Second, a choice of medium-high scan velocity and medium hatch dis-

tance was ideal for creating an isotropic product. The MOGA method extends the

capability of conventional GA models to tackle multi-objective tasks as well as inves-

tigate relationships between the process parameters and the quality of prints.
Machine Learns the Effects of Process Parameters

Although the GA method is able to provide some optimal solutions in the choice of

process parameters, the range of each input variable is still highly limited. Besides,

the fitness functions used in the algorithm are often developed through a second-or-

der regression model and are accurate enough to determine the relationship of the

target objective versus the process parameters. Before starting a print job, an oper-

ator will want to assess the validity of the process parameters associated with the job

as print failures are costly. Traditional approaches to generate predictions of print

quality come at a high cost associated with the necessary computational and exper-

imental resources. Specifically, depending on the scale of the part being analyzed,

computational studies can take excessively long times, even with the utilization of

high-performance computing (HPC) resources. Experimental trial-and-error proced-

ures are not cheap either due to the iteration of adjustments. Hence, data-driven ap-

proaches and ML have a big role to play in making quick, accurate, and analytical

predictions for the reliability and quality of printed parts. Furthermore, there are still

complex interdependencies between the process parameters that are not suffi-

ciently understood; ML has the potential to unravel these complexities and provide

a better understanding of the physics at play.
Matter 3, 1541–1556, November 4, 2020 1547



Figure 3. Applications of Optimizing and Understanding Process Parameter Configurations

(A) Schematic diagram of the L-PBF process including controllable parameters and properties.

(B) Strips with hatching created by laser in the L-PBF process. Adapted with permission from Krauss et al.76 Copyright 2014, Elsevier.

(C) Processing parameters optimization for thin-wall structures: (a) original setting of print speed, (b) original setting of extrusion multiplier, (c)

optimized setting of print speed, and (d) optimized setting of extrusion multiplier. Adapted with permission from Gardner et al.16 Copyright 2019,

Wiley-VCH.

(D) Schematic diagram of artificial neural network (ANN) model training based on geometric compensation. Adapted with permission from

Chowdhury.77 Copyright 2016, University of Cincinnati & OhioLINK.

(E) Schematic of compensated stereolithography (STL) generation using a trained ANN model. Adapted with permission from Chowdhury.77 Copyright

2016, University of Cincinnati & OhioLINK.
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In recent studies, ML approaches have been realized by many researchers who have

implemented them in different aspects of AM jobs. For example, Gardner et al.16

applied CNNs to predict print quality under various process parameter settings,

including print speed, extrusion multiplier, and fan speed, in the FFF process. In

the study, a CNN model was developed to distinguish the print condition (flaw or

good quality) based on images captured under different combinations of process

parameters. Part quality could be optimized by finding the parameter settings

that are predicted to have the highest probability of no flaws. Examples of optimized

print speed and extrusion multiplier for thin-wall structures are shown in Figure 3C.

The work realized optimization of localized parameter settings for the FFF 3D-print-

ing method using ML algorithms. Besides the applications in FFF, Kappes et al.78

developed an ML model to predict part porosity based on print orientation and

powder properties in L-PBF processes. A developmental ML technique was trained

using a dataset consisting of 3,600 samples that correlate part porosity with print

orientation. Through their investigations, they were able to provide insights on

the effects of part position, print orientation, and the fraction of recycled powder
1548 Matter 3, 1541–1556, November 4, 2020
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on keyhole porosity development and lack of fusion defects. The study further

showed that there is a weak correlation between the aforementioned process pa-

rameters and the porosity of a printed part. Additionally, Chowdhury77 demon-

strated the use of a feedforward NN for compensating for dimensional inaccuracies

in printed parts caused by residual stresses. Given a part to be printed, the NN is first

trained on the predicted post-print deformation of the part, which is obtained

through thermomechanical simulations (Figure 3D). Next, a point cloud of the part

geometry is input into the NN, which then outputs a compensated point cloud.

The compensated point cloud is then post-processed to generate the new compen-

sated geometry, which is used as the printing geometry (Figure 3E). Using this frame-

work, significant improvements in dimensional tolerances were achieved as per the

results reported.
IN SITU ANOMALY DETECTION

During the fabrication process, various anomalies commonly occur due to the

improper settings of process parameters. Traditional anomaly detection during

the fabrication process greatly depends on the experience of the operators, and

hence the identification of defects can be prone to inaccuracy, inconsistency, and

delays through ex situ examining methods. In order to assess the printing condition

and product quality in an efficient and accurate manner, in situ monitoring systems

for detecting defects are highly needed. Enhanced computer vision methods,

improved experimental setups, and novel simulation approaches have been devel-

oped and are continuously being updated in the literature to address these issues. In

this section, novel image processing methods and ML algorithms are analyzed to

demonstrate the capability of in situ anomaly detection in the AM process.
Real-Time Anomaly Detection Using Novel Image-Processing Methods

Detection systems heavily rely on direct feedback, as shown by the numerous studies

using in situ assessments of real-time image streams. In one such study, a 3D digital

image correlation (DIC) camera, an advanced camera imaging reconstruction sys-

tem, is used to monitor the surface geometry of a printed part during an FFF print

process. The system is able to reconstruct the surface geometry through correlating

stereoscopic images (Figure 4A).79 During the data correlation process, a random

sample consensus (RANSAC) algorithm was applied to eliminate outliers for the

point cloud alignment task and comparisons were made between the 3D-DIC and

CAD models (Figure 4B). The results further showed that this method is capable of

detecting porosities inside the printed part to a resolution of 0.0202 mm in the point

cloud. This work demonstrates the capability of the 3D-DIC system to detect in situ

porosity and shows great potential for application to other AM methods, such as L-

PBF, where in situ detection and diagnosis of porosity defects is also a big challenge.

Besides the novel methods applied in the FFF process, other image processing al-

gorithms are also being developed in L-PBF to address various types of defects

generated in the complicated fabrication process. In a recent study, image segmen-

tation methods were developed with a high-resolution image system to determine

the accuracy of in situ geometry identification of L-PBF layer-wise images.80 Here,

several active contour methods, such as active contours without edges (ACWE)

and level-set methods with bias field estimation (LSM-BFE), have been applied to

create an in situ closed curve (boundary) outlining the layer-wise printing geometry

and were compared with ex situ ground truth optical microscopy images shown in

Figure 4C. Tests were conducted under different laser scan directions, printing ge-

ometries, and lighting conditions, with results concluding that dark illumination
Matter 3, 1541–1556, November 4, 2020 1549



Figure 4. Applications of Anomaly Detection Using Image Processing Methods and ML Algorithms

(A) A surface geometry reconstruction system based on 3D-DIC methods. Adapted with permission from Holzmond and Li.79 Copyright 2017, Elsevier.

(B) Deviation between the 3D-DIC and the CAD models. Adapted with permission from Holzmond and Li.79 Copyright 2017, Elsevier.

(C) Examples of the in situ image, microscope image, and ground truth contours for different printing geometries. Adapted with permission from

Caltanissetta et al.80 Copyright 2018, Elsevier.

(D) Experimental setup for a real-time anomaly detection system, where a camera is mounted on the extruder through a 3D-printed cantilever structure.

Adapted with permission from Jin et al.17 Copyright 2019, Elsevier.

(E) Three printing qualities for the intra-plane condition: under-extrusion, good quality, and over-extrusion. Adapted with permission from Jin et al.17

Copyright 2019, Elsevier.

(F) Four conditions of the nozzle height (high+, high, good, and low) that may cause delamination. Adapted with permission from Jin et al.81 Copyright

2020, Wiley-VCH.

(G) Six categories of anomalies in L-PBF: (a) recoater hopping, (b) recoater streaking, (c) debris, (d) super-elevation, (e) part failure, and (f) incomplete

spreading. Adapted with permission from Scime and Beuth.10 Copyright 2018, Elsevier.
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configurations leads to the best segmentation and measurement performance; the

ACWEmethod was more computationally efficient and hence superior for in situ im-

plementation; the total measurement variability was about 1.6%–3.2% of the normal

dimension for squared and circular shapes. This work provided an effective imaging

tool for layer-wise in situ assessments on geometry accuracy during the L-PBF

process.
1550 Matter 3, 1541–1556, November 4, 2020
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In Situ Anomaly Detection Using ML

Studies using novel image processing methods demonstrate significant progress of

in situ anomaly detection tasks. However, these approaches largely depend on the

specific problems and are unable to detect multiple and different types of defects

simultaneously. For these reasons, ML methods hold great promise in overcoming

these problems as they are able to analyze underlying patterns and features within

datasets. New ML approaches are developed to address these problems using

more universal methods with high efficiency and accuracy.

By establishing imaging systems to monitor the fabrication process, computer vision

and ML algorithms can be applied for recognizing and classifying various defects in

real time during the FFF process.17,81 In the following study, a universal serial bus

(USB) camera was attached to the print nozzle providing a fixed filming view of the

printing area around the nozzle (Figure 4D). In-plane printing conditions, including

over- and under-extrusion (Figure 4E), were analyzed by training CNNmodels based

on real-time images. Classification results were predicted to determine in situ print-

ing status. Similar methodologies were also applied to recognize inter-planar de-

fects such as delamination, where nozzle height was the primary process parameter

to be monitored and the model was trained based on input images with four

different types of nozzle height (Figure 4F). The accuracy of the two models reached

98% for intra-planar defects and 91% for delamination problems. Additionally, an

automated closed-loop correction system was set up, modifying printing parame-

ters based on the prediction results of the ML model. The overall response rate

for anomaly detection was verified to be faster than the speed of an experienced

operator. The results demonstrate the remarkable performance of in situ anomaly

detection using ML models.

Unsupervised learning techniques are also developed and used with AM processes

other than FFF, such as L-PBF and inkjet printing.10,82 In one study, six representative

anomalies, including recoater hopping, recoater streaking, debris, super-elevation,

part failure, and incomplete spreading, were examined for the L-PBF process, with

the image of each case10 shown in Figure 4G. The model applied a filter bank to

the input images and obtained a dictionary based on the clustering of the filter

response. After that, images were analyzed based on the similar match of the dictio-

nary into histograms (fingerprints). During detection, the new image would follow

the same procedure and obtain a fingerprint. By comparing the similarity of the fin-

gerprints in the database, corresponding defects could be traced. The model was

reported to have an overall 98% accuracy in detecting seven cases (six defects

plus anomaly free) and 95% accuracy classifying the six anomalies. This method pro-

vided a general and invaluable approach for solving the multiple anomaly detection

problems with high accuracy during the L-PBF manufacturing process without a

complicated data preparation procedure. This technique can also be adaptively

applied to other general defect detection tasks in various manufacturing systems.
DISCUSSION

The integration of ML algorithms in the three main stages of AM processes has

shown the feasibility and efficiency of the explored methods. Among these innova-

tive state-of-the-art algorithms, it is also meaningful to discuss the advantage of

each algorithm with respect to their applicable problems. Besides the general NN

model discussed in the introduction, there are other special networks that have spe-

cific advantages. In particular, CNNs are widely applied in image recognition prob-

lems for their ability in extracting patterns and feature information embedded in the
Matter 3, 1541–1556, November 4, 2020 1551



Table 1. Overview of ML Algorithms Used in Additive Manufacturing Applications

AM Applications ML Algorithms

Structural optimization clustering,20 SVM,83 NNs,84

Material design decision trees,33 CNNs34

Process parameter determination PCA,85 NNs77,86

Defects detection clustering,10 SVM,18 CNNs17

Quality assessment SOM,21 GP,19 CNNs81
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images; recurrent neural networks (RNNs) are usually applied to sequential input

data as the internal hidden state (memory) of the network can store extra temporal

information. In AM processes, there are problems that are reminiscent of typical

problems (such as image recognition) that are applicable to CNNs. For example,

in defect detection problems, images are directly monitored and fed into an ML

model to diagnose the printing condition. In addition, for DM design, a DM is an as-

sembly of voxels that can be regarded as a matrix conserving both material and

spatial information for the input of the CNN model. However, not all problems in

the AM process can be easily broken down into a labeled dataset. Hence, other un-

supervised approaches are considered; for instance, clustering can be used in the

pre-processing of structural optimization, where density distribution is optimally

classified in the literature.20 Additionally, principal component analysis (PCA) can

be applied to determine and optimize the dominant process parameters involved

in certain AM applications. Table 1 shows an overview of ML algorithms used in

AM applications.

From the examples shown in Table 1, various NN approaches are actively and effectively

adopted to tackle AM applications. However, it is not a trivial process to properly deter-

mine the number of hidden layers and nodes needed for an NN model. A common

approach involves a trial-and-error process that tunes the number of layers and nodes

needed to obtain optimal performance of the model structure. However, this method

can be inefficient and time consuming. To expedite the determination of the NN archi-

tecture, various rules are adopted. Firstly, a proper combination of layers and nodes

should be selected based on the size of the dataset. Although a deeperNNmay achieve

better performance, insufficient data could lead to overfitting problems, which leads to

an inferior trained model. In other words, the size of the training data should always be

greater than the number of learnable parameters in the model. Secondly, considering a

smaller number of hidden layers at the trial of model constructions and then building up

the architecture based on the training results could be an effective strategy. Sometimes,

several hidden layers could be sufficient to obtain a high-performance model in many

practical problems.87 Thirdly, taking advantage of pre-trained models can be used, as

some ML algorithms (e.g., residual NNs, densely connected convolutional networks)

are so impactful that pre-trained models are available from online databases. During

the training process, themain body of the architecture as well as pre-trained parameters

can be kept while modifying the last several layers to fit the problem settings. The

computational time and resources are significantly improved using this method.

Following these general steps can be helpful in achieving an efficient NN architecture.
CHALLENGES AND PERSPECTIVE

Algorithm-based methods, especially ML, provide several benefits and advantages

in different types of AM processes as so far discussed. However, there remain chal-

lenges, giving rise to future opportunities in the development of the three AM
1552 Matter 3, 1541–1556, November 4, 2020
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stages. The outlook for enhanced algorithms as well as the development direction of

the introduced methods and potential applications are as follows:

(1) Refined interface settings for TO: TO of multi-scale or multi-material frame-

works in general does not take into consideration practical limitations at

phase transition boundaries. Namely, the interfaces are assumed to be strong

and have an abrupt material change, which is not the case for many AM tech-

nologies. Researchers have observed various interface characteristics,

including porosity, material indent, lack of fusion, and serrated surfaces,

which can generate lower (sometimes higher) shear and tensile strengths,

gradient properties, and heterogeneity at the material intersections.70–73

These interfacial effects heavily depend on the choice of material, printing

mechanism, and process parameters. Therefore, studying these constraints

from experiments and adding them to the design phase is a crucial step to

reach practical solutions.

(2) Further exploration of ML-based 3D printed material design: the prediction

objective can be extended to nonlinear material behaviors including defor-

mation, crack evolution, and damage accumulation where complex mapping

functions may be required. A more general design space can be constructed

so that the geometry, distribution, and material constituents are all consid-

ered within a single model. At the same time, the ML models can be incorpo-

rated with well-developed physical principles of materials. It has been shown

to be possible to optimize and generalize an NN using the governing partial

differential equations, which greatly reduces the required number of labels

obtained from simulations. For instance, researchers have predicted fluid me-

chanics using NNs trained with the Navier-Stokes equations.74,75 A similar

method can potentially be adopted to save the computational cost of mate-

rial behavior simulations. Lastly, most researchers focus on forward models,

leading to a lack of studies on generative models, named so for their ability

to generate possible material designs given a set of desired properties.

(3) Training data collection and computational cost saving: the effectiveness of

ML models is entirely dependent on the availability and quality of training

data. Training data in the context of AM process parameters and anomaly

detection are obtained from either numerical or empirical methods. Numer-

ical methods provide the ability to obtain data based on simulating physical

models, while empirical data are acquired through experiments. However,

simulations can be highly complicated and sometimes prone to inaccuracy

due to the complexity of the problem. Additionally, conducting numerous

repeatable experiments to collect data can be also time consuming and

tedious. Hence, autonomous high-throughput experiments can be estab-

lished to conduct training data collection processes. Studies have shown

promising results on acquiring a satisfying amount of training data using

high-throughput methods in AM.78,88 Additionally, the computational cost

for training will also increase dramatically when the setting variables are

augmented. Here, feature extraction methods that reduce the problem

domain (e.g., PCA) and advanced learning strategies (e.g., Bayesian optimi-

zation) can be used to save the computational cost and time needed for

ML.85,88

(4) Spillover to other manufacturing methods: the summarized and proposed al-

gorithm-based methods discussed above are not limited to AM techniques.

Indeed, they are applicable to many other types of AM technologies, such

as binder jetting, as well as traditional manufacturing processes, including

CNC machining and even bridge construction. For example, a random forest
Matter 3, 1541–1556, November 4, 2020 1553
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algorithm, which is a typical decision tree ML structure, was applied to a CNC

milling process to successfully detect cyber-physical attacks with 91.1% accu-

racy.89 Another study developed a bridge crack detection system with an

active contour model and SVM to recognize and evaluate material failures.90

State-of-the-art algorithms explored in this review have shown their capability in

solving critical problems in different types of manufacturing methods, and it is

believed that algorithmically driven methods hold huge potential and great promise

in the development of Industry 4.0 as the next generation of the industrial revolution.
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