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Atoms are the building blocks of matter that make up the world. To create new materials to

meet some of civilization’s greatest needs, it is crucial to develop a technology to design

materials on the atomic and molecular scales. However, there is currently no computational

approach capable of designing materials atom-by-atom. In this study, we consider the pos-

sibility of direct manipulation of individual atoms to design materials at the nanoscale using a

proposed method coined “Nano-Topology Optimization”. Here, we apply the proposed

method to design nanostructured materials to maximize elastic properties. Results show that

the performance of our optimized designs not only surpasses that of the gyroid and other

triply periodic minimal surface structures, but also exceeds the theoretical maximum

(Hashin–Shtrikman upper bound). The significance of the proposed method lies in a platform

that allows computers to design novel materials atom-by-atom without the need of a pre-

determined design.
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In 1959, Richard P. Feynman gave his famous talk entitled
“There is Plenty of Room at the Bottom”1, which has inspired
the field of nanotechnology and nanoscience. Nanotechnology

involves the manipulation of materials at the nanoscale and has
had significant impact on multiple research directions such as
drug delivery and tissue engineering in medicine2 and solar cells
in renewable energy applications3. Atoms are the building blocks
of matter that make up the world. To create new materials to
meet some of civilization’s greatest needs, it is crucial to develop a
technology to design materials on the atomic and molecular
scales. However, decades after Feynman envisioned the develop-
ment of nanomachines, machines constructed of single atoms and
molecules, we are still not capable of realizing his original idea to
create materials or machines with atom-by-atom control—
arranging atoms one-by-one the way we want them. As of today,
not only is there a lack of mature manufacturing technologies that
can directly manipulate individual atoms to create materials but
also there is no computational approach capable of designing
materials atom-by-atom. The ability to design materials with
atomic-level precision will unleash the full potential of matter and
create immense opportunities across a wide range of scientific
and engineering fields.

Recent advances in additive manufacturing have opened the
gate to complex and multiscale architected materials4–7. For
instance, the photopolymerization-based two-photon lithography
(TPL) technique can print arbitrarily complex three dimensional
(3D) structures with submicrometer resolution8. To fully leverage
these new manufacturing technologies, it is essential to develop
computational approaches capable of optimizing materials
structures at different length scales to achieve desired properties.
Conventional materials discovery and design processes largely
rely on empirical, trial-and-error observations, which are
expensive and time-consuming. While the rational design of
materials is challenging, researchers have been turning to nature
for inspiration. This design approach is referred to as biomimicry
and has led to many innovations in materials design such as
nacre-inspired nanocomposites with high strength and high
toughness9,10, conch shell‐inspired composites with high impact
resistance11, and bone-inspired materials with high fracture
toughness12. In addition to nature, researchers have been looking
for inspiration from mathematics to design novel materials. For
instance, triply periodic minimal surfaces (TPMS) have drawn
tremendous attention in the materials science community. There
is a widely held view that cellular materials created by TPMS may
have superior properties due to their unique geometric features.
Cellular materials are made up of a representative unit cell that is
repeated throughout. Light-weight cellular materials have various
properties beyond solid materials. From a mathematical point of
view, TPMS structures are interesting as their surfaces have zero
mean curvature and are characterized by local area-minimizing.
In the TPMS family, the gyroid is the most widely studied
structure and has been found in nature such as the wing scales of
various butterflies. In recent years, extensive investigations on
gyroid cellular materials have been reported to explain the physics
underlying their mechanical13–16, thermal17, optical18, and elec-
tromagnetic19 properties.

Although nature or mathematics is an important source of
inspiration, they should not be taken as the predominant guide to
design materials as there is no one structure that works best for
every purpose. Recently, machine learning (ML), a branch of
artificial intelligence (AI), has been perceived as a promising tool
to design novel materials20–23. Nevertheless, using ML models for
the inverse design of materials with thousands of design variables
is still an active field of reseach24. In major engineering industries,
a more mature design approach referred to as topology optimi-
zation (TO) has been extensively implemented. TO provides

unrestricted design freedom and has been successfully applied to
problems with more than a billion design variables25. The
objective of TO is to search for optimal shapes and material
distributions to maximize the performance of materials or
structures such as aircraft and automotive components, buildings
and bridges, and cellular materials25–29. Despite a large number
of interesting shapes and designs that were proposed using TO,
the design domains were always discretized using a finite element
mesh. For this reason, conventional TO approaches using the
finite element method (FEM) have been so far limited to the
design of structures at the continuum scale and cannot be applied
to design materials at the atomistic level.

Here, we aim to bring the world closer to realizing Feynman’s
vision with a de novo TO approach capable of designing materials
at the nanoscale with atom-by-atom control. To distinguish our
TO approach using atomistic modeling from the conventional
TO approaches using FEM, we name the proposed method
“Nano-Topology Optimization (Nano-TO)”. In this study, we
apply Nano-TO to design nanostructured materials to maximize
elastic properties. Results show that the performance of our
optimized designs not only surpasses that of the gyroid and other
TPMS structures but also exceeds the theoretical maximum that
is defined by the Hashin–Shtrikman (HS) upper bound30. We
demonstrate that by optimizing the surface effect at the nanoscale
using Nano-TO, the theoretical maximum of the bulk modulus
can be exceeded. The significance of the proposed method lies
in a platform that allows computers to design novel materials
atom-by-atom without the need of a predetermined design. We
envision that a broad array of novel nanomaterials and nano-
machines with unprecedented performance can be designed using
Nano-TO.

Results
Nano-topology optimization. In this study, we consider the
possibility of direct manipulation of individual atoms to design
materials at the nanoscale. The flowchart of Nano-TO is shown in
Fig. 1. The objective of Nano-TO is to search for the best possible
atom distributions to maximize (or minimize) a desired property
of nanostructured materials. Two types of atoms are considered:
real and virtual. The atom type is allowed to switch during the
optimization process. A sensitivity analysis is performed to cal-
culate the sensitivity value of each atom in a design domain (see
“Methods” section). Conceptually, the sensitivity analysis evalu-
ates the contribution of each atom to the objective function
(desired property) and this information is used to redistribute the
atoms in the design domain. Afterwards, a sensitivity filtering
technique is applied to modify the sensitivity value of each atom
based on a weighted average of the sensitivity values of other
atoms in a fixed neighborhood. The neighborhood region is
defined by the filter radius. The purpose of applying the sensi-
tivity filtering technique is to obtain the sensitivity values of
virtual atoms (see “Methods” section). The real atoms with the
lowest sensitivity values are considered the most inefficient and
will be removed (converted to virtual atoms) in the next iteration.
On the other hand, the virtual atoms with the highest sensitivity
values will be added back (converted to real atoms) to the design
domain. The number of real atoms to be converted to virtual
atoms and that of virtual atoms to be converted to real atoms are
controlled by the rejection and admission rates, respectively. As
the initial structure consists of mostly real atoms, to reach the
target volume fraction (relative density), the rejection rate has to
be larger than admission rate in the first stage of the optimization
process. The net rejection rate can be defined as the rejection rate
minus admission rate. The smaller the net rejection rate, the more
iterations are required to reach the target volume fraction.
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However, if the net rejection rate is too large, it can cause the
optimization to converge to a low-quality design or make the
optimization process unstable. After the target volume fraction is
reached, the rejection and admission rates are set to be equal in
the second stage of the optimization process, until the optimi-
zation is converged. Lastly, the atoms denoted by real will be kept
and the atoms denoted by virtual will be removed from the design
domain. Consequently, a nanostructured material with an opti-
mized atom distribution can be generated.

Objective of maximizing the bulk modulus. Nano-TO is a
general-purpose design approach and can be applied to design
materials at the nanoscale with different objectives. Here we apply
Nano-TO to design nanostructured materials with the objective
of maximizing the bulk modulus. The bulk modulus represents
the resistance of a material to being elastically deformed by a
hydrostatic pressure. Aluminum is selected as the base material
and the initial structure is created based on the face-centered
cubic (FCC) structure. The interactions between atoms are
described by the embedded atom method (EAM)31. The design
domain is a cubic unit cell with a length of approximately 4 nm.
Periodic boundary conditions are imposed along the x-direction,
y-direction, and z-direction to create the supercell structure for
evaluating the macroscopic elastic properties. The initial structure
consists of 4000 atoms. If all atoms are set to be real atoms and
periodic boundary conditions are imposed, each atom in the
design domain is identical and will have the same sensitivity
value. For this reason, an atom at a random location is set to be a
virtual atom to introduce an imperfection in the initial structure.
For the optimization parameters, the target volume fraction is set
to be in a range of 50–80%. In the first stage, to ensure the
stability of the optimization process, the rejection and admission
rates are set to be 2 and 1, respectively. Consequently, two real
atoms with the lowest sensitivity values are converted to virtual
atoms while a virtual atom with the highest sensitivity value is
converted to a real atom in each iteration, until the target volume
fraction is reached. In the second stage, the rejection and
admission rates are both set to be 1, until the optimization is
converged. The filter radius is chosen to be slightly smaller than
the lattice constant of the base material (i.e., aluminum), which is
approximately 4 Å. Consequently, the 12 nearest neighbors of
each atom are considered when the sensitivity filtering technique

is implemented. Note that using a larger filter radius will cause
the optimized designs to lose topological details (undesirable in
this case) and increase the computational cost as more neigh-
boring atoms have to be considered in the optimization process.

Nano-TO is a gradient-based design approach and the
optimized designs would vary with the selection of the initial
structure. To ensure that the optimized designs are of high
performance (strong local minima), we use a strategy of random
initialization (see “Methods” section). Starting with different
initial structures, a total of 16 designs with a volume fraction of
50% are generated by Nano-TO. Those designs have the bulk
modulus in a range of 18.25–22.20 GPa, with an average of 20.95
GPa. The design with the highest bulk modulus is denoted by
Nano-TO design and selected for further examination. The
Nano-TO designs with varying volume fractions are shown in
Fig. 2a, b. Periodic images of the Nano-TO design with a volume
fraction of 50% are shown in Fig. 2c and Supplementary Fig. 1.
The structural evolution during the optimization process is
presented in Supplementary Movies 1 and 2. It can be seen in the
figures that the Nano-TO designs are nearly cubic symmetric.
Furthermore, the virtual atoms form truncated octahedron
structures in the body-centered cubic (BCC) arrangement. The
surfaces in the Nano-TO designs are mostly {111} and {100}.
Interestingly, the thermodynamically most stable structure (Wulff
polyhedron) for a simple metal with a FCC structure (e.g.,
aluminum) is also the truncated octahedron exposing the faces
{111} and {100}32. At present, it is unclear whether the optimal
structures for maximizing the bulk modulus would be related to
the Wulff polyhedron of the base material. Future studies are
required to provide physical insight into this finding. Another
case study for maximizing the elastic constant of C33 is reported
in Supplementary Notes, Supplementary Figs. 2–4, Supplemen-
tary Movies 3 and 4.

Comparison of Nano-TO designs with TPMS structures. To
evaluate the capability of the proposed method, the Nano-TO
designs are compared with TPMS structures including the gyroid,
Schwarz D (diamond), and Schwarz P (primitive). Porous
materials can be considered as two-phase composites with the
solid and void phases. It has been shown that the HS bounds give
an accurate estimate for the effective moduli of two-phase com-
posites30. The HS upper bound is applied to calculate the
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Fig. 1 Flowchart of Nano-TO. The flowchart shows the approach of Nano-TO to design materials at the nanoscale with atom-by-atom control. The black
and red arrows represent the two optimization stages (stage 1 and 2), respectively.
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theoretical maxima of the bulk modulus for varying volume
fractions (see “Methods” section). The bulk moduli of the Nano-
TO designs and TPMS structures are shown in Fig. 3a. It can be
seen in the figure that the bulk moduli of the Nano-TO designs
surpass those of the TPMS structures with the same volume
fraction. The result indicates that the TPMS structures are quite
far from the optimal structures for maximizing the bulk modulus.
Surprisingly, the bulk moduli of the Nano-TO designs exceed the
HS upper bound. For instance, the bulk modulus of the Nano-TO
design with a volume fraction of 50% is 22.20 GPa and the HS
upper bound for the same volume fraction is only 19.63 GPa. We
further confirm that the bulk moduli of the Nano-TO designs are
indeed higher than the HS upper bound after considering the
anisotropy effect (see “Methods” section and Supplementary
Fig. 5).

Exploring the surface effect. The surface effect can no longer be
neglected when the cell size of a material is reduced to a few
nanometers. It is important to understand whether the Nano-TO
designs are still superior to the TPMS structures at a larger scale.
Here we take the Nano-TO design with a volume fraction of 50%
as a template and parametrize the design based on vacancies with
truncated octahedron structures in the BCC arrangement to
create the same design with varying cell sizes. The Nano-TO
design and TPMS structures with varying cell sizes from 4 to 64
nm are created (Supplementary Fig. 6) and their bulk moduli are
shown in Fig. 3b. It can be seen in the figure that the bulk moduli
of the Nano-TO design and TPMS structures vary with the cell
size since the surface-to-volume ratio decreases with the cell size.
This size dependence effect at the nanoscale provides an oppor-
tunity to design novel materials with superior properties. When

the cell size is 16 nm or larger, the surface effect in those struc-
tures is negligible. The bulk modulus of the Nano-TO design is
always higher than those of the TPMS structures regardless of the
cell size. Furthermore, the bulk modulus of the Nano-TO design
exceeds the HS upper bound (19.63 GPa) when the cell size is
small (e.g., 4 nm) and converges to the HS upper bound when the
cell size is large enough. Hence the proposed method shows that
the theoretical maximum bulk modulus is attainable in practice
for this system and identifies a structure with that maximum bulk
modulus. To shed light on the superiority of the Nano-TO design
compared to the TPMS structures, the atomic strain (εzz) dis-
tributions of those structures subjected to a constant hydrostatic
strain of −10−2 are shown in Fig. 3c. The cell size in the com-
parison is 16 nm and the volume fraction is 50%. The average
atomic strains for the Nano-TO design, gyroid, diamond, and
primitive are −0.0048, −0.0033, −0.0035, and −0.0029, respec-
tively. The average atomic strains of εxx and εyy are the same as
that of εzz due to the symmetry of those structures. The result
shows that the Nano-TO design has a better load transfer
mechanism as the average atomic strain (compressive) is larger
than those of the TPMS structures. This is probably due to the
structural simplicity of the Nano-TO design compared to the
complex TPMS structures. Consequently, a higher bulk modulus
is achieved as more elastic strain energy can be accommodated.
Note that the TPMS structures in the comparison are based on
solid-networks. Another comparison with the TPMS structures
based on sheet-networks is reported in Supplementary Notes,
Supplementary Figs. 7 and 8.

Exceeding the theoretical maximum. To understand how the
bulk modulus of a material can exceed the theoretical maximum,
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Fig. 2 Nano-TO designs for maximizing bulk modulus. a The Nano-TO designs for maximizing the bulk modulus with varying volume fractions from 50 to
80%. The bulk atoms are shown in green and the surface atoms are shown in gray. b The corresponding distributions of virtual atoms. c Periodic images
(3 × 3 × 3) of the Nano-TO design with a volume fraction of 50% and the corresponding distribution of virtual atoms. The surfaces in the Nano-TO designs
are mostly {111} and {100}. The virtual atoms form truncated octahedron structures in the BCC arrangement.
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slice views of the Nano-TO design with a volume fraction of 50%
are shown in Fig. 4a to reveal the interconnectivity. It can be seen
in the figure that the Nano-TO design consists of nanoplate
structures with {111} surfaces. Depending on the cell size, the
nanoplate structures consist of varying numbers of surface and
bulk layers. For instance, in the unit cell with a length of 4 nm, the
nanoplate structures are three atomic-layer thick, including two
surface layers and one bulk layer. When the cell size is increased
to 16 nm, the nanoplate structures become 12 atomic-layer thick,
including 2 surface layers and 10 bulk layers. Elastic properties of
the surface material are different from those of the bulk mate-
rial33. To quantify the differences, an atomistic model of a
nanoplate with a free surface {111} on each side is created and
shown in Fig. 4b. Periodic boundary conditions are imposed
along the in-plane directions (i.e., ½1�10� and ½11�2�). Vacuum
regions are created for the top and bottom of the nanoplate to
represent two flat free surfaces. In this specific model, the
nanoplate consists of 12 layers including 2 surface layers and 10
bulk layers. Other models with varying numbers of layers from 3
to 48 are also created. We first investigate extreme cases with the
minimum and maximum thicknesses. The nanoplate consists of
three layers including two surface layers and one bulk layer are
considered as the thinnest possible nanoplate and is denoted by
surface model. On the other hand, the nanoplate with the infinite
number of layers, denoted by bulk model, is created by removing
the vacuum regions and applying a periodic boundary condition
along the out-of-plane direction (i.e., [111]). We apply normal
strains along the two in-plane directions in a range of −10−2 to
10−2 on those two models and the corresponding strain–energy
curves are shown in Fig. 4c.

The result shows that the material with free surfaces is
elastically stiffer, indicating that the {111} surfaces are stiffer than
the bulk material in the ½1�10� and ½11�2� directions. Furthermore,
the Young’s moduli of nanoplates in the in-plane directions are
the same since the strain–energy curves in the ½1�10� and ½11�2�
directions are identical. To quantify how much stiffer the material
with free surfaces is compared to the bulk material, the modulus
ratios in the two in-plane directions for the nanoplates with
varying numbers of layers are shown in Fig. 4d. The modulus
ratio is defined as the Young’s modulus of a nanoplate divided by
that of the bulk material. The result shows that the nanoplate
consisting of three layers is the stiffest, which is more than 30%
stiffer than the bulk material. Note that surfaces can be softer
than the bulk material as the lower atomic coordination on
surfaces tends to make them softer (see Supplementary Notes).
However, in certain combinations of surface orientation and
loading direction, the electron redistribution on surfaces may give
rise to stronger bonding, and thus making them stiffer than the
bulk material34. Whether a surface is stiffer or softer depends on
the competition between the electron redistribution and the lower
atomic coordination on the surface.

Discussion
We demonstrate that Nano-TO can utilize the surface effect in
the design of nanostructured materials. By optimizing the surface
topology at the nanoscale, the HS upper bound for the bulk
modulus can be exceeded. Note that the surface effect comes from
the variation of bond strength with coordination, which can only
be captured in atomistic simulations. Therefore, the conventional
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TO approaches using FEM will not generate the Nano-TO
designs shown in this study. We show the applications of Nano-
TO on the design of nanostructured materials for maximizing a
desired property, in which two objectives, the bulk modulus and
elastic constant of C33 (see Supplementary Notes), are considered,
respectively. Various multiobjective optimization methods35 can
be implemented in Nano-TO to design nanostructured materials
with multiple desired properties. The most common approach is
the weighted sum method. To apply this method, the sensitivity
values of each atom for different objectives are calculated indi-
vidually and the weighted sensitivity value is calculated by
choosing proper weights (user’s preference) for different objec-
tives. Consequently, optimized designs with the best tradeoff
between competing objectives can be generated by Nano-TO.
Although the examples presented here focus on elastic moduli,
Nano-TO can be applied to design nanomaterials with other
properties. It has been shown that the mechanical properties of
metallic materials are highly related to their elastic moduli. For
instance, an elastic anisotropy parameter can be used to identify
alloys that display super elasticity, super strength, and high
ductility, known as gum metals36. If the correlations between the
elastic moduli of a material and its other mechanical properties
(e.g., failure strain, strength, and toughness) can be discovered,
the same design approach to tailor materials’ elastic moduli can
be applied to tailor materials’ other mechanical properties.

The reliability of Nano-TO depends on the accuracy of the
atomistic modeling implemented in the optimization process. In
this study, we choose aluminum as the base material since there
are interatomic potentials available in the literature to accurately
reproduce basic equilibrium properties of aluminum including its
elastic constants, vacancy formation and migration energies, and
surface energies. With accurate interatomic potentials, Nano-TO

can be applied to design nanostructured materials using other
base materials (e.g., copper, nickel, and gold). Most TO problems
at the continuum-scale, except for some simple cases, are non-
convex optimization problems, which contain many local
minima29. We find that this is also the case in the Nano-TO
examples presented in this study since the optimized designs are
generally dependent on the initial structure. We show that Nano-
TO is capable of identifying the optimal designs by using several
different initial structures. However, this dependence on the
initial structure could become a computational bottleneck when
applying Nano-TO to large-scale materials design problems as the
computational cost is increased. Therefore, further improvements
of the Nano-TO approach are essential to make it less sensitive to
the initial structure and prevent generating low-quality designs.

A typical material with a volume of a few cubic centimeters
consists of around 1023 atoms. Even if the volume is reduced to a
few cubic micrometers, the material still consists of around 1011

atoms. To achieve atomic-level precision, each atom is a design
variable. Therefore, the computational cost to design materials on
a scale of only a few micrometers is already beyond current
computational capabilities. However, this computational bottle-
neck could be overcome in the future using AI and ML techni-
ques. Future studies are required to develop suitable ML
techniques to replace the computationally expensive atomistic
modeling in the sensitivity analysis. We envision that this ML-
based approach could potentially reduce the computational cost
of Nano-TO by several orders-of-magnitude.

Methods
Cellular materials based on TPMS. Three lattice types based on TPMS are
investigated: the gyroid (G), diamond (D), and primitive (P). Their level surface
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where a is the length of a cubic unit cell and t is the threshold of the surface. The
surface is generated by finding U= 0. Unit cells with a finite volume are created by
in-filling one side of the surface. When t is 0, a porous structure with a relative
density (volume fraction) of 0.5 will be created. Porous structures with varying
volume fractions can be created by adjusting the value of t (Supplementary
Table 1). The maximum volume fraction is set to be 80% (i.e., 80% solid phase and
20% void phase). The minimum volume fraction is set to be 50% to avoid
instability of porous structures due to a large portion of surface atoms in a small
unit cell.

Sensitivity analysis. Pair potentials (e.g., Lennard–Jones) do not include the
environmental dependence of bonding. Therefore, the strength of individual bonds
in the bulk is the same as that on (or near) the surface, which is physically not true.
This local environmental dependence is especially important for simulations of
surfaces and can be considered in many-body potentials such as the EAM
potentials31. The total potential energy of a material system consisting of N atoms
in the EAM potentials is given by:

Etot ¼
XN
i¼1

Fα
XN
j≠i

ρβ rij
� � !

þ 1
2

XN
j≠i

ϕαβ rij
� �( )

; ð4Þ

where rij is the distance between atoms i and j, Fα is the embedding energy to place
atom i of type α into the electron cloud, ρβ is the contribution to the electron
charge density from atom j of type β at the location of atom i, ϕαβ is the pair-wise
potential energy between atom i of type α and atom j of type β. Since the
embedding energy term considers the local background electron density of atoms,
the EAM potentials can describe the variation of bond strength with coordination.
Therefore, the EAM potentials are applicable for modeling material systems with
surfaces or other crystalline defects as those investigated in this study. To adopt an
EAM potential in Nano-TO, the potential is modified in the way that the design
variables are integrated into the total potential energy of a material system. The
modified EAM potential is:

Etot ¼
XN
i¼1

xiFα
XN
j≠i

xjρβ rij
� � !

þ 1
2
xi
XN
j≠i

xjϕαβ rij
� �( )

; ð5Þ

where x is a design variable, in which 1 indicates that the corresponding atom is
kept and 0 indicates that the atom is removed. Here, instead of removing atoms
from a material system, atoms are converted to virtual atoms. Therefore, those
atoms with the design variable of 1 are referred to as real atoms and the others with
the design variable of 0 are referred to as virtual atoms. When a material system is
subjected to a constant external strain (e.g., εzz), the elastic strain energy of the
system can be calculated as the energy difference between the total potential energy
in the deformed state and that in the equilibrium state. The calculation is:

Eela ¼
XN
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ð6Þ

where rij,def is the distance between atoms i and j in the deformed state and rij,equ is
the distance between atoms i and j in the equilibrium state. Compared to the pair-
wise potential energy ϕαβ, the embedding energy Fα is less sensitive to a change of
rij (see Supplementary Notes, Supplementary Figs. 9 and 10). Thus, to simplify the
calculation, the elastic strain energy of the material system is approximated as:

Eela �
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; ð7Þ

Assuming that the objective is to maximize the elastic constant of C33. In this
case, the elastic constant of C33 is associated with the external strain of εzz. Thus,
maximizing the elastic constant of C33 is equivalent to maximizing the elastic strain
energy of the material system subjected to a constant external strain of εzz. This

approach can also be applied to optimize other elastic properties. For instance,
maximizing the bulk modulus is equivalent to maximizing the elastic strain energy
of the material system subjected to a constant hydrostatic strain. The optimization
problem can be written as:

max
x
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i¼1

xi
N ¼ v*

; ð8Þ

where v* is the prescribed volume fraction. Nano-TO uses a sensitivity analysis to
determine the atom rejection and admission. The gradient of the objective function
(i.e., elastic strain energy) with respect to the design variable xk can be
approximated as:

∂Eela
∂xk

� ∂

∂xk

XN
i¼1

1
2
xi
XN
j≠i

xjϕαβ rij;def
� �( )

� ∂

∂xk

XN
i¼1

1
2
xi
XN
j≠i

xjϕαβ rij;equ
� �( )

¼ 1
2

XN

j≠k

xjϕαβ rkj;def
� �

þ 1
2

XN

i≠k

xiϕαβ rik;def
� �

8<
:

9=
;

� 1
2

XN

j≠k

xjϕαβ rkj;equ
� �

þ 1
2

XN

i≠k

xiϕαβ rik;equ
� �

8<
:

9=
;

¼
XN

j≠k

xjϕαβ rkj;def
� �

�
XN

i≠k

xiϕαβ rik;equ
� �

� 2
Ek;ela
xk

;

ð9Þ

where Ek,ela is the elastic strain energy of atom k. The design variable xk can either
be 0 or 1. If atom k is a real atom (xk= 1), its sensitivity value (gradient) can be
approximated as two times of its elastic strain energy. On the other hand, if atom k
is a virtual atom (xk= 0), its sensitivity value is undefined.

Sensitivity filtering. TO problems at the continuum-scale using FEM have shown
that modifying the sensitivity value of each element (finite element) based on a
weighted average of the element sensitivity values in a fixed neighborhood is a
highly efficient way to ensure mesh-independency38. The filtered sensitivity value
of atom k is calculated as:

c∂Eela
∂xk

¼ 1Pn

i¼1
Ĥi

Pn
i¼1

Ĥi
∂Eela
∂xi

Ĥi ¼ rmin � dist k; ið Þ; i 2 njdist k; ið Þ≤ rminf g
; ð10Þ

where n is the total number of atoms (including virtual atoms) in a fixed neigh-
borhood of atom k, Ĥi is the weighting factor for atom i, dist(k, i) is the distance
between atoms k and i, and rmin is the filter radius. Note that the sensitivity value of
a virtual atom is undefined. Thus, it is set to be zero in the sensitivity analysis.
However, the filtered sensitivity value of a virtual atom could be nonzero when
there are real atoms in its fixed neighborhood. This nonzero sensitivity information
for virtual atoms is essential as it allows Nano-TO to determine which virtual
atoms should be converted to real atoms in the optimization process.

Atomistic modeling. Full-atomistic simulations are implemented using Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)39. A modified
EAM potential for aluminum is adopted for the simulations. The original version
of the EAM potential was developed by Mishin et al.40. The potential functions of
the embedding energy Fα, atomic electron density ρβ, and pair-wise potential
energy ϕαβ in the EAM potential are fitted to both experimental data and ab initio
calculations to accurately reproduce basic equilibrium properties of aluminum
including its elastic constants, vacancy formation and migration energies, and
surface energies. To give Nano-TO the ability to remove an atom from a material
system and add it back when it is needed, a new atom type denoted by virtual is
introduced. When a real atom is converted to a virtual atom, the interactions
between the virtual atom and the other atoms in the material system are completely
turned off. Physically, the atom is removed from the material system as it does not
interact with the other atoms at all. However, the position information of the
virtual atom is reserved in order to convert the virtual atom back to a real atom
when it is needed. To ensure that the modified EAM potential and elastic prop-
erties calculations are accurate, we compare the lattice properties of aluminum
predicted in this study with those reported in the literature40. The comparison is
shown in Supplementary Table 2 and the results are identical. The approach to
calculate the elastic properties is described in the Supplementary Methods. The
Open Visualization Tool (OVITO)41 is implemented for the visualization and
atomic strain analysis.

Hashin–Shtrikman (HS) bounds. The HS bounds provide theoretical upper and
lower bounds for the effective elastic moduli of multiphase materials of arbitrary
phase geometry30. The HS bounds for the bulk modulus of an, at least cubic
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symmetric, two-phase composite are given by:

Kþ
HS ¼ K2 þ

v1
K1 � K2ð Þ�1þ3v2 3K2 þ 4G2ð Þ�1 ; ð11Þ

K�
HS ¼ K1 þ

v2
K2 � K1ð Þ�1þ3v1 3K1 þ 4G1ð Þ�1 ; ð12Þ

where Kþ
HS and K�

HS represent the upper and lower bounds, respectively. K is the
bulk modulus, G is the shear modulus, and v is the volume fraction. The subscript
of K, G, and v denotes the phase of materials. The phase 2 material is assumed to be
stiffer than the phase 1 material (K2 > K1; G2 >G1). For porous materials, the solid
phase can be represented as the phase 2 material and the void phase as the phase 1
material (K1= 0; G1= 0). The HS upper bound for the bulk modulus of a porous
material is given by:

Kþ
HS ¼ K2 þ

v1
�K2ð Þ�1þ3v2 3K2 þ 4G2ð Þ�1 : ð13Þ

The HS lower bound for the bulk modulus of a porous material is zero. The
Voigt–Reuss–Hill (VRH) average42 is applied to compute the shear modulus of
aluminum (nearly isotropic). This approach calculates the mean value of the upper
and lower bounds of the effective shear modulus obtained through the Voigt and
Reuss assumptions:

GV ¼ C11 � C12ð Þ þ 3C44

5
; ð14Þ

GR ¼ 5C44 C11 � C12ð Þ
4C44 þ 3 C11 � C12ð Þ ; ð15Þ

Gavg ¼
GV þ GR

2
; ð16Þ

where GV and GR represent the upper and lower bounds, respectively. Gavg is the
average shear modulus. The elastic constants used in the calculations are reported
in Supplementary Table 2. The average shear modulus (29.28 GPa) is used to
calculate the HS upper bound for the bulk modulus.

To eliminate the anisotropy effect of aluminum and ensure that the HS upper
bound for the bulk modulus can certainly be surpassed by utilizing the surface
effect at the nanoscale, the range of the shear modulus of aluminum is
investigated. For an anisotropic material, the shear modulus varies with the shear
plane as well as the shear direction. The transformation of the shear modulus from
a reference set of axes (1, 2, and 3) to a new set of axes (1′, 2′, and 3′) can be
written as43:

G0
4 ¼

1
s044

; ð17Þ

s044 ¼ s44 þ 4s11 � 4s12 � 2s44ð Þ a231a
2
21 þ a232a

2
22 þ a233a

2
23

� �
; ð18Þ

where G0
4 is the shear modulus for the new set of axes, sij is the elastic

compliance constant using the Voigt notation, and aim is the direction cosine
indicating the angle between the i axis of the new axis system and the m axis of
the reference axis system. Here, without loss of generality, the new axis 3′ is set
to be the plane of shear and the new axis 2′ is set to be the direction of shear.
After exploring all possible combinations of the shear plane and direction, the
maximum shear modulus (Gmax) and minimum shear modulus (Gmin) of
aluminum are identified. Gmax is calculated as 31.60 GPa, which is associated
with a shear in the 〈100〉 direction and is independent of the shear plane. Gmin

is calculated as 26.12 GPa, which is associated with a shear in the 〈110〉
direction on a {110} plane. Gmax and Gmin represent the extreme values of the
shear modulus of aluminum. Thus, the HS upper bounds calculated with these
two extreme values represent the limits when taking the anisotropy effect into
consideration.

Data availability
All data needed to evaluate the conclusions in this study are present in the paper and
Supplementary Information. Additional data related to this study are available from the
corresponding author upon reasonable request.

Code availability
All necessary information to generate the code used to evaluate the conclusions in this
study are present in the paper and Supplementary Information. The code used for the
atomistic simulations is the open-source code, LAMMPS. The interatomic potential can
be found at http://www.ctcms.nist.gov/potentials. The script used to calculate elastic
constants can be found at https://github.com/lammps/lammps/tree/master/examples/
ELASTIC.
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