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•  A physics-informed neural network framework is proposed to predict the behavior of digital materials.
•  The proposed method does not require simulation labels and has similar performance as supervised learning models.
•  Nonlinear strain is well approximated by adding deformation constraints in the loss function.
•  The energy loss function can be evaluated parallelly over the elements and quadrature points, allowing for efficient model training.
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In this work, a physics-informed neural network (PINN) designed specifically for analyzing digital
materials is introduced. This proposed machine learning (ML) model can be trained free of ground
truth  data  by  adopting  the  minimum  energy  criteria  as  its  loss  function.  Results  show  that  our
energy-based PINN reaches similar accuracy as supervised ML models. Adding a hinge loss on the
Jacobian  can  constrain  the  model  to  avoid  erroneous  deformation  gradient  caused  by  the
nonlinear logarithmic strain. Lastly, we discuss how the strain energy of each material element at
each numerical integration point can be calculated parallelly on a GPU. The algorithm is tested on
different mesh densities to evaluate its computational efficiency which scales linearly with respect
to  the  number  of  nodes  in  the  system.  This  work  provides  a  foundation  for  encoding  physical
behaviors  of  digital  materials  directly  into  neural  networks,  enabling  label-free  learning  for  the
design of next-generation composites.
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Additive  manufacturing  (AM),  also  known  as  3D-printing,
has been a popular research tool for its ability to accurately fab-
ricate structures with complex shapes and material  distribution
[1–4]. This spatial maneuverability inspires designs of next-gen-
eration  composites  with  unprecedented  material  properties
[5–7],  and  programmable  smart  composites  that  are  responsive
to  external  stimulus  [8–11].  To  characterize  this  large  design
space realized by AM, researchers introduced the concept of di-
gital materials (DM). In short, a digital material description con-
siders a composite as an assembly of material voxels, which cov-
ers  the  entire  domain  of  3D-printable  materials  as  long  as  the
DM resolution is high enough [12, 13].

It  becomes  difficult  to  explore  and  understand  the  material

behaviors of DMs due to the enormous design space. Tradition-
al  methods such as experiments and numerical  simulations are
often hindered by labor or high computational costs. One popu-
lar  alternative  is  to  use  a  high  capacity  machine  learning  (ML)
model (neural network) to interpolate and generalize the entire
design space from a sample dataset labeled with experiments or
simulations  [14–17]. This  is  also  called  a  supervised  ML  ap-
proach  (Fig.  1), and  has  been  proven  to  yield  accurate  predic-
tions with adequate ground truth data and a properly structured
model [18–22]. On the other hand, data is not the only source of
knowledge  especially  for  problems  where  the  well-established
physical laws can be encoded as prior knowledge for neural net-
work  training.  As  seen  in Fig.  1,  such  a  model  is  named  as  the
physics-informed neural network (PINN) which directly uses the
governing equations (typically partial differential equations that
define the physical  rules)  as  the training loss  rather  than learn-
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ing from data [23]. Researchers have been using PINN as a solu-
tion  approximator  or  a  surrogate  model  for  various  physics
problems  with  initial  and  boundary  conditions  as  the  only
labeled data [24–28].  However,  unlike the supervised approach,
PINN frameworks must be well engineered to fit  different prob-
lems.  For  example,  Heider  et  al.  [29]  successfully  represent  a
frame-invariant  constitutive  model  of  anisotropic  elasto-plastic
material responses as a neural network. Their results show that a
combination of spectral tensor representation, the geodesic loss
on the unit sphere in Lie algebra, and the “informed” direct rela-
tion  recurrent  neural  network  yields  better  performance  than
other  model  configurations.  Yang  et  al.  [30]  build  a  Bayesian
PINN  to  solve  partial  differential  equations  with  noisy  data.
Their  framework is  proved to  be more accurate  and robustness
when the posterior is estimated through the Hamiltonian Monto
Carlo  method  rather  than  the  variational  inference.  Chen  and
Gu  [31]  realize  fast  hidden  elastography  based  on  measured
strain distributions using PINNs. Convolution kernels are intro-
duced  to  examine  the  conservation  of  linear  momentum
through  the  finite  difference  method.  The  above-mentioned
works  demonstrate  the complexity  of  PINN applications,  which
thus require intense research work.

In this paper, we will introduce how PINNs can be extended
into DM problems by solving the following challenges. First, the
material property (e.g., modulus, Poisson's ratio) of a DM is de-
scribed  in  a  discontinuous  manner  and  thus  not  differentiable
over  space.  Therefore,  the  PINN approach must  be  modified to
compensate  for  this  DM  specific  feature.  Second,  nonlinear
strains generated  by  large  deformation  on  solids  should  be  ap-
proximated  and  constrained  properly.  Lastly,  the  proposed
PINN  should  be  reasonably  accurate  and  efficient  compared
with numerical simulations and supervised ML models. This ap-
proach can offer a label-free training of ML models to more effi-
ciently understand and design next-generation composites.

The  PINN  is  first  tested  on  a  1D  digital  material  which  is
simply  a  composite  beam  as  seen  in Fig.  2a.  We  would  like  to
make a  note  that  all  quantities  presented  in  this  paper  are  di-
mensionless,  meaning  that  one  could  use  any  set  of  SI  units  as
long as they are consistent (e.g.,  m for length with Pa for stress,
or  mm for  length with MPa for  stress).  The beam consists  of  10
linear elastic segments which all have the same length of 0.1 but

different modulus within a range of 1–5. The beam is fixed at its
left tip and extended by 20% on its right tip (Dirichlet boundary
condition).  The  governing  equation  for  this  1D  digital  material
can be easily derived as (Eu')' = 0 where E denotes the modulus,
u denotes the displacement field, and the material is assumed to
be free of body force. For this problem, only the linear compon-
ent of strain is considered, which will be extended into a nonlin-
ear strain in a later section. Our goal is to train a neural network
to predict the displacement field under various material config-
urations. A normal physics-informed approach would construct
a  neural  net  which  takes  material  configuration E and  material
coordinate x as  inputs,  and outputs a displacement response at
that coordinate.  The loss function would simply be the squared
residual of the governing equation given above. The auto differ-
entiation  packages  of  ML  frameworks  allows  straightforward
computation  of u' by  backpropagating  the  neural  network.
However, one also needs E' which is not available under a digit-
al  material  configuration  where E is  basically  a  combination  of
step functions.

minu

1

2

∫
u ′Eu ′dx

E ui

Therefore,  instead  of  the  strong  governing  equation  which
requires  spatial  differentiation,  a  weaker  expression  is  adopted
that  takes  the  integral  of  the  material  strain  energy  over  space.
For this  static  problem,  the  solution  for  a  minimum  strain  en-

ergy  also satisfies the strong form governing

equation. Here, we construct a neural network which takes only
 as  the  inputs,  and  outputs  the  nodal  displacement  values .

The total strain energy is evaluated using a first-order interpola-
tion function for the displacement field which is then passed as
the  loss  function  for  the  neural  network.  The  neural  network
contains 3 hidden layers of size 10 and uses tanh() as the activa-
tion function. 900 sets of input features are randomly generated
to train  the  model.  200  sets  of  features  are  labeled  by  numeric-
ally solving the governing equation where half is used for valida-
tion, and the other half for final testing. The model is trained for
50 epochs on the Adam optimizer with a batch size of  10 and a
learning  rate  of  0.001.  We  stop  training  at  an  epoch  number
where the model performance starts to converge.  This stopping
criterion is implemented for all the models presented in this pa-
per. The trained PINN shows an average displacement prediction
error of 0.0038 for each node based on the testing set. Figure 2b
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Fig. 1.   A schematic comparing the supervised learning and physics-informed learning for material behavior prediction. A supervised learning
approach fits a model to approximate the ground truth responses of collected data. A physics-informed approach fits a model by directly learn-
ing from the governing partial differential equation (PDE).
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shows  a  comparison  between  some  predicted  shapes  of  the
beam and the ground truth shapes. As a reference, another neur-
al network is trained in a supervised manner with the same data-
set  but  labeled.  This  supervised  model  shares  the  exact  same
structure and hyperparameter settings, and reaches a testing er-
ror of 0.0036 after 50 epochs of training. To examine PINN's per-
formance under  different  data  density,  both models  (PINN and
supervised)  are  further  trained  with  180  and  4500  sets  of  input
features. The same proportion of validation and testing data are
labeled for each case. A comparison of performance is shown in
Fig.  2c where both models  produce similar  testing errors  under
different sizes  of  datasets.  So  far,  we have demonstrated the vi-
ability of training a PINN with a strain energy loss for this simple
linear  digital  material  under  a  Dirichlet  boundary  condition.
And it turns out that the same approach also functions properly
under a Neumann boundary condition with a few modifications.

minv

1

2

∫
E I

(
v ′′)2

dx −F vtip I

Figure 2d shows a same 1D digital  material  configuration as
previous,  but  subject  to  a  constant  force  of  1  at  the  right  tip
bending  the  beam  upward.  The  beam  is  assumed  to  possess  a
constant area moment of inertia of 0.6 at its cross section. Again,
the minimum energy approach is adopted which has an expres-

sion of .  denotes the area moment

v

vi v ′
i

of  inertia  of  the  beam  cross  section,  denotes the  vertical  dis-
placement field, and F denotes the constant force at the right tip.
Notice that there is a work term associated with the tip force F in
the system energy expression when there is a Neumann bound-
ary condition. To numerically evaluate the strain energy (the in-
tegral term) of  a  bent  beam, we adopt  the Hermite  shape func-
tion  [32]  which  assigns  two  degrees  of  freedom  at  each  node i:
the  beam  deflection  and  beam  slope ,  so  that  the  beam
smoothness is guaranteed. Therefore, the neural network has an
input layer of size 10 to receive the material configuration E,  an
output layer of size 20 to predict the deflections and slopes at the
nodes (except for the left tip which is fixed and has a slope of 0),
and 3 hidden layers of size 30. The neural network for the bend-
ing problem has more neurons in its hidden layers because it is
expected  to  have  larger  and  more  complex  output  responses.
The activation is chosen to be the scaled exponential linear unit
function. The  model  is  trained  for  80  epochs  on  the  Adam  op-
timizer on 900 sets of randomly generated input features with a
batch  size  of  1  and  a  learning  rate  of  0.001.  Another  200  sets  of
features are randomly generated and labeled for  validation and
testing.

The trained PINN shows an average deflection prediction er-
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Fig. 2.   a A 1D digital material extension problem subject to a Dirichlet boundary condition. The goal is to have a PINN predicting the displace-
ment responses based on different material configurations. b Comparison between numerical simulated material deformation and neural net-
work predicted material deformation. Here, x represents the coordinate, u represents the displacement, “Sim” represents the simulation results
and “Pred” represents the model predicted results. c Comparison between the supervised model and the PINN with different amount of data for
the 1D tension problem. d A 1D digital material bending problem subject to a Neumann boundary condition. The goal is to have a PINN pre-
dicting the deflection responses based on different material configurations. e Comparison between numerical simulated material bending and
neural network predicted material bending. Here, x represents the coordinate, u represents the deflection. f Comparison between the super-
vised model and the PINN with different amount of data for the 1D bending problem.
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−F vtip

ror  of  0.0056  for  each  node  based  on  the  testing  set. Figure  2e
shows  a  comparison  between  some  predicted  shapes  of  the
beam and the ground truth shapes. A reference supervised neur-
al  network  with  the  exact  same  structure  and  hyperparameters
reaches a testing error of 0.0055 after 80 epochs of training. The
performance of the PINN and the supervised model is also com-
pared under  different  sizes  of  datasets  as  discussed for  the ten-
sion  problem  (Fig.  2f).  Interestingly,  the  results  of  this  bending
problem  have  two  major  characteristics.  First,  the  supervised
model  greatly  outperforms  the  PINN  under  a  low  data  density
(180 sets of training features). Second, using any batch size oth-
er than 1 would greatly reduce the training performance. It is be-
lieved  that  these  phenomenons  are  caused  by  the  work  term

 which assigns a much larger gradient on the right tip de-
flection than  any  other  model  outputs.  This  unbalanced  gradi-
ent can introduce instability during the parameter descent pro-
cess which will be explored further in future studies.

The  above  discussions  illustrate  the  energy-based  physics-
informed  models  for  intuitive  1D  digital  materials.  However,
real-world problems  can  be  more  complex  in  the  following  as-
pects: high order tensor operation for 2D or 3D geometries, non-
linear strain as a result of large deformation, computational effi-
ciency  for  evaluating  and  backpropagating  the  energy  loss,
which will be addressed below.

ν

Figure  3a shows  a  2D  digital  material  configuration  that  is
symmetrical  about  its  vertical  centerline.  The  material  sheet  is
fixed at its bottom edge and extended by a distance of 3 at its top
edge (a  Dirichlet  boundary  condition).  The  entire  material  do-
main is discretized into 8×8 elements with a size of 1×1. The ma-
terial elements  obey isotropic linear  elasticity  where the modu-
lus E stays in the range of 1–5, and the Poisson's ratio  stays in
the range of 0.3–0.49. Figure 3b gives a simple illustration of the
physics-informed model  for  this  2D digital  material.  Due to  the
symmetry  and  boundary  conditions,  this  configuration  has  a
total  of  64  features  (2  material  properties  for  each  of  the  32
elements  on  one  side)  as  the  inputs  for  the  neural  network,
and  90  nodal  displacement  responses  (45  nodes  on  one  side,
each has 2 displacement responses) as the outputs of the neural
network. Note  that  there  are  23  nodal  displacements  con-
strained by the boundary conditions or the symmetry, so the ac-
tual prediction should be of size 67. However, we set the output

minu

1

2

∫
εTEεdΩ

ε

layer  size  to  90  for  a  better  computational  efficiency  which  will
be  explained  in  more  details  later.  The  loss  function  for  this
neural network is again the elastic energy but in a 2D expression

. Here we use the 2D logarithmic strain vector

for  to  account  for  the  nonlinearity  under  large  deformation,
and E represents the 3×3 2D material stiffness matrix built upon
modulus and Poisson's ratio. The integral is evaluated numeric-
ally  using  4-point  Gaussian  quadrature  on  first-order  2D  shape
functions. As the problem size and complexity increase, sequen-
tially computing  the  element  strain  energy  loss  would  be  ex-
tremely inefficient and more expensive than directly labeling the
data through  simulations.  Notice  that  the  element  strain  ener-
gies and Gaussian quadrature can both be computed parallelly.
Therefore, when implementing the energy loss function, we can
greatly  accelerate  the  forward  and  backward  path  of  the  neural
network utilizing the batch tensor operation on a GPU.

The following discussions will  be based on Pytorch,  but  can
be  easily  extended  to  other  frameworks.  First,  we  pre-construct
mask tensors  to  filter  the  model  outputs  so  that  the  displace-
ment predictions will obey the boundary conditions exactly. This
masking  operation  blocks  any  gradients  passing  the  boundary
nodes. The masked output layer u is then reshaped (according to
connectivity)  into  a  fifth-order  tensor  of  size  batch×32×1×2×4
where  the  second  dimension  represents  the  32  elements.  The
quadrature  tensor  is  also  pre-constructed  with  a  size  of
batch×1×4×4×2  where  the  third  dimension  represents  the  4
quadrature points. Using Eq. (1) which multiplies the last two di-
mensions of the displacement tensor and the quadrature tensor,
we can calculate the displacement gradient on the local coordin-
ates ξ for each element at each quadrature point.

∂u

∂ξ
=

[
u11

u21

u12

u22

u13

u23

u14

u24

]
 −1

4
(1−ξ2)

−1

4
(1−ξ1)

1

4
(1−ξ2)

−1

4
(1+ξ1)

1

4
(1+ξ2)

1

4
(1+ξ1)

−1

4
(1+ξ2)

1

4
(1−ξ1)


T

.

(1)

 

a b

Symmetrical Extended

Fixed Nodal displacements?

Penalize

Neural network

Input: [E1 v1 E2 v2 ... E32 v32]

Output: [u1,1 u2,1 u1,2 u2,2
 ... u1,45 u2,45]

Loss: (ϵ)T [E] (ϵ) dΩt∫2 Ω

1

 

Fig. 3.   a A 2D digital material extension problem subject to a Dirichlet boundary condition. The entire 2D sheet has a size of 8×8, and is exten-
ded by a distance of 3 at its top edge. b A simple schematic showing the structure of the PINN for the 2D digital material. The model takes the
modulus and Poisson's ratio as inputs and outputs the vertical and horizontal displacements for each node. The total material strain energy is
used as the loss function for training.
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∂u/∂x

x

∂u/∂x + I

U2 ε

C

Next, the global displacement gradient  (it has a shape
of  batch×32×4×2×2)  can  be  obtained  by  multiplying  the  local
gradient tensor with the mapping tensor from ξ to  which is  a
fixed  quantity  and  can  be  pre-constructed  before  training.  The
deformation  gradient F equals  to ,  where I is  a  2×2
identity  matrix.  The  Green's  deformation  tensor C can  then  be
calculated as FTF which further equals to the square of the right
stretch tensor . And the nonlinear logarithmic strain  can be
obtained by taking the square root and natural log on the eigen-
space of  (take operations on the eigenvalues of C, then recon-
struct the tensor).  The strain tensor is then reshaped into a size
of batch×32×4×3.

ν
E/(1−ν2) Eν/(1−ν2) E/[2(1+ν)]

ε

For the material  stiffness  matrix,  the input  features  are  aug-
mented  so  that  instead  of  passing E and  into  the  model,  we
pass , ,  and  for  each material
element (the  neural  network  has  an  input  layer  of  size  96  in-
stead of 64).  Thereafter, E (size of batch×32×4×3×3) can be eas-
ily constructed by gathering the corresponding input features on
each of its rows without an element-wise value assignment. The
strain energy of each element at each quadrature point can now
be  parallelly  computed  on  GPU  through  tensor  products
between reconstructed  and E.  The last step is to sum over the
second (size of 32) and third (size of 4) dimensions of the energy
tensor to obtain the total strain energy as the prediction loss.

Every step discussed above is a pure tensor operation that is
parallelable on a GPU and differentiable. However, the deforma-
tion  gradient F step  may  require  extra  care.  Due  to  the  neural
network's ignorance of the physical world, the model is theoret-
ically  allowed  to  predict  any  displacement  responses  without
constraints at the early stages of training. This can produce phys-
ically nonexistent F which has a negative determinant. Although
the  model  training  can  still  proceed  for  such  erroneous F,  the
gradient  update  for  the  neural  network  parameters  are  likely
pointing  towards  a  wrong  direction  and  thus  negatively  affect
the  convergence  rate  and  stability.  To  overcome  this  issue,  one
method  is  to  initialize  the  neural  network  so  that  the  initial
guesses of  nodal  displacement  responses  have  small  mag-
nitudes compared to the size of an element (1×1), and the mod-

−min(0, J )
el  parameters  never  enter  the  problematic  region.  Another
method  we  adopted  is  adding  this  extra  term  to  the
loss  function  where J (Jacobian)  is  the  determinant  of F.  This
term has no effect on training when J is positive, but it penalizes
and forces the neural network to produce more positive J values
whenever it predicts an erroneous F.

With the above discussions in mind, the PINN for this 2D di-
gital material has an input layer of size 96, an output layer of size
90,  4  hidden  layers  of  size  (96,  128,  128,  90),  and  an  activation
function tanh(). The model is trained for 50 epochs on the Adam
optimizer  on  4500  sets  of  randomly  generated  input  features
with a batch size of 5 and a learning rate of 0.001. Another 1000
sets of  features  are  randomly  generated  and  labeled  for  valida-
tion and testing. The trained PINN shows an average testing er-
ror  of  0.021  (average  R-squared  value  of  90.48%)  for  the  nodal
displacements on each coordinate. Figure 4a shows a comparis-
on between some predicted shapes of the deformed 2D material
and the ground truth shapes. A reference supervised neural net-
work  with  the  exact  same  structure  and  hyperparameters
reaches a testing error of 0.019 after 50 epochs of training. Nvidia
RTX 2080  GPU  is  used  to  accelerate  tensor  operations.  To  fur-
ther  examine  the  scalability  of  our  energy  loss,  we  construct
neural  networks  for  different  mesh  configurations  as  seen  in
Fig. 4b. The neural network size scales linearly with the number
of  nodes.  All  these  models  with  different  sizes  are  each  trained
on 4500 sets of randomly generated input features for one epoch.
The  corresponding  real-world  time  is  plotted  in Fig.  4b which
scales  linearly  with  respect  to  the  number  of  nodes.  Due  to  the
nonlinearity  and  stochasticity  of  the  neural  network  training
process,  it  is  difficult  to  bound  the  required  number  of  epochs
till  convergence  and  will  be  explored  in  future  work.  However,
the  results  still  show  the  potential  of  the  energy-based  PINN  to
be more efficient  than generating  simulation labels  (simulation
cost  is  typically O(n2)-O(n3)  where n represents  the  number  of
nodes [33]).

In  summary,  we  successfully  trained  PINN  models  for  DM
using  the  minimum  energy  criteria  instead  of  the  governing
equation  as  the  loss  function.  The  method  shows  comparable
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Fig. 4.   a Comparison between numerically simulated material deformation and neural network predicted material deformation for the 2D di-
gital material. b Computation cost of one epoch of model training under different mesh. The orange dashed lines indicate the symmetry axis.
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accuracy to the supervised models on the 1D tension, 1D bend-
ing,  and  2D  tension  problems  discussed  in  this  paper.  Results
show that our proposed PINN can properly approximate the log-
arithmic  strain  and  fix  any  erroneous  deformation  gradient  by
adding a  hinge  loss  for  the  Jacobian.  Moreover,  the  loss  evalu-
ation step can be parallelized over the elements and quadrature
points on  a  GPU  through  proper  tensor  rearrangements  on  in-
put features and outputs responses. The single epoch computa-
tion cost of the optimized algorithm scales linearly with respect
to the number of nodes (or elements) in a DM mesh. This work
shows the  possibility  of  training  PINNs  for  digital  materials  ac-
curately  and  efficiently,  allowing  direct  ML  exploration  of  next-
generation composite design without the necessity of expensive
multi-physics simulations.
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