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a b s t r a c t 

In this work, a physics-informed neural network (PINN) designed specifically for analyzing digital mate- 

rials is introduced. This proposed machine learning (ML) model can be trained free of ground truth data 

by adopting the minimum energy criteria as its loss function. Results show that our energy-based PINN 

reaches similar accuracy as supervised ML models. Adding a hinge loss on the Jacobian can constrain 

the model to avoid erroneous deformation gradient caused by the nonlinear logarithmic strain. Lastly, 

we discuss how the strain energy of each material element at each numerical integration point can be 

calculated parallelly on a GPU. The algorithm is tested on different mesh densities to evaluate its com- 

putational efficiency which scales linearly with respect to the number of nodes in the system. This work 

provides a foundation for encoding physical behaviors of digital materials directly into neural networks, 

enabling label-free learning for the design of next-generation composites. 

© 2021 Published by Elsevier Ltd on behalf of The Chinese Society of Theoretical and Applied Mechanics. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

b

c

4

c

g

u

r

s

s

p

[

h

m

t

a

(

s

t  

a

g  

o

f

c

F

w

p

t

b

f

a

a

f

r

p

t

l

r

o

t

w

t

r

h

P

v

T

a

h

2

(

Additive manufacturing (AM), also known as 3D-printing, has 

een a popular research tool for its ability to accurately fabri- 

ate structures with complex shapes and material distribution [ 1 –

 ]. This spatial maneuverability inspires designs of next-generation 

omposites with unprecedented material properties [ 5 –7 ], and pro- 

rammable smart composites that are responsive to external stim- 

lus [ 8 –11 ]. To characterize this large design space realized by AM, 

esearchers introduced the concept of digital materials (DM). In 

hort, a digital material description considers a composite as an as- 

embly of material voxels, which covers the entire domain of 3D- 

rintable materials as long as the DM resolution is high enough 

 12 , 13 ]. 

It becomes difficult to explore and understand the material be- 

aviors of DMs due to the enormous design space. Traditional 

ethods such as experiments and numerical simulations are of- 

en hindered by labor or high computational costs. One popular 

lternative is to use a high capacity machine learning (ML) model 

neural network) to interpolate and generalize the entire design 

pace from a sample dataset labeled with experiments or simula- 

ions [ 14 –17 ]. This is also called a supervised ML approach ( Fig. 1 ),

nd has been proven to yield accurate predictions with adequate 

round truth data and a properly structured model [ 18 –22 ]. On the

ther hand, data is not the only source of knowledge especially 

or problems where the well-established physical laws can be en- 

oded as prior knowledge for neural network training. As seen in 
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ig. 1 , such a model is named as the physics-informed neural net- 

ork (PINN) which directly uses the governing equations (typically 

artial differential equations that define the physical rules) as the 

raining loss rather than learning from data [23] . Researchers have 

een using PINN as a solution approximator or a surrogate model 

or various physics problems with initial and boundary conditions 

s the only labeled data [ 24 –28 ]. However, unlike the supervised 

pproach, PINN frameworks must be well engineered to fit dif- 

erent problems. For example, Heider et al. [29] successfully rep- 

esent a frame-invariant constitutive model of anisotropic elasto- 

lastic material responses as a neural network. Their results show 

hat a combination of spectral tensor representation, the geodesic 

oss on the unit sphere in Lie algebra, and the “informed” direct 

elation recurrent neural network yields better performance than 

ther model configurations. Yang et al. [30] build a Bayesian PINN 

o solve partial differential equations with noisy data. Their frame- 

ork is proved to be more accurate and robustness when the pos- 

erior is estimated through the Hamiltonian Monto Carlo method 

ather than the variational inference. Chen et al. [31] realize fast 

idden elastography based on measured strain distributions using 

INNs. Convolution kernels are introduced to examine the conser- 

ation of linear momentum through the finite difference method. 

he above-mentioned works demonstrate the complexity of PINN 

pplications, which thus require intense research work. 

In this paper, we will introduce how PINNs can be extended 

nto DM problems by solving the following challenges. First, the 

aterial property (e.g., modulus, Poisson’s ratio) of a DM is de- 

cribed in a discontinuous manner and thus not differentiable over 
cal and Applied Mechanics. This is an open access article under the CC BY license 
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Fig. 1. A schematic comparing the supervised learning and physics-informed learning for material behavior prediction. A supervised learning approach fits a model to 

approximate the ground truth responses of collected data. A physics-informed approach fits a model by directly learning from the governing partial differential equation. 
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pace. Therefore, the PINN approach must be modified to compen- 

ate for this DM specific feature. Second, nonlinear strains gener- 

ted by large deformation on solids should be approximated and 

onstrained properly. Lastly, the proposed PINN should be reason- 

bly accurate and efficient compared with numerical simulations 

nd supervised ML models. This approach can offer a label-free 

raining of ML models to more efficiently understand and design 

ext-generation composites. 

The PINN is first tested on a 1D digital material which is sim- 

ly a composite beam as seen in Fig. 2 a. We would like to make a

ote that all quantities presented in this paper are dimensionless, 

eaning that one could use any set of SI units as long as they 

re consistent (e.g., m for length with Pa for stress, or mm for 

ength with MPa for stress). The beam consists of 10 linear elas- 

ic segments which all have the same length of 0.1 but different 

odulus within a range of 1–5. The beam is fixed at its left tip 

nd extended by 20% on its right tip (Dirichlet boundary condi- 

ion). The governing equation for this 1D digital material can be 

asily derived as (Eu’)’ = 0 where E denotes the modulus, u de- 

otes the displacement field, and the material is assumed to be 

ree of body force. For this problem, only the linear component of 

train is considered, which will be extended into a nonlinear strain 

n a later section. Our goal is to train a neural network to pre-

ict the displacement field under various material configurations. 

 normal physics-informed approach would construct a neural net 

hich takes material configuration E and material coordinate x as 

nputs, and outputs a displacement response at that coordinate. 

he loss function would simply be the squared residual of the gov- 

rning equation given above. The auto differentiation packages of 

L frameworks allows straightforward computation of u’ by back- 

ropagating the neural network. However, one also needs E’ which 

s not available under a digital material configuration where E is 

asically a combination of step functions. 

Therefore, instead of the strong governing equation which re- 

uires spatial differentiation, a weaker expression is adopted that 

akes the integral of the material strain energy over space. For 

his static problem, the solution for a minimum strain energy 

i n u [ 
1 
2 

∫ 
u ′ Eu ′ dx ] also satisfies the strong form governing equa- 

ion. Here, we construct a neural network which takes only E as 

he inputs, and outputs the nodal displacement values u i . The to- 

al strain energy is evaluated using a first-order interpolation func- 

ion for the displacement field which is then passed as the loss 

unction for the neural network. The neural network contains 3 

idden layers of size 10 and uses tanh() as the activation func- 

ion. 900 sets of input features are randomly generated to train 

he model. 200 sets of features are labeled by numerically solving 

he governing equation where half is used for validation, and the 
2 
ther half for final testing. The model is trained for 50 epochs on 

he Adam optimizer with a batch size of 10 and a learning rate 

f 0.001. We stop training at an epoch number where the model 

erformance starts to converge. This stopping criterion is imple- 

ented for all the models presented in this paper. The trained 

INN shows an average displacement prediction error of 0.0038 

or each node based on the testing set. Fig. 2 b shows a compar-

son between some predicted shapes of the beam and the ground 

ruth shapes. As a reference, another neural network is trained in a 

upervised manner with the same dataset but labeled. This super- 

ised model shares the exact same structure and hyperparameter 

ettings, and reaches a testing error of 0.0036 after 50 epochs of 

raining. To examine PINN’s performance under different data den- 

ity, both models (PINN and supervised) are further trained with 

80 and 4500 sets of input features. The same proportion of vali- 

ation and testing data are labeled for each case. A comparison of 

erformance is shown in Fig. 2 c where both models produce simi- 

ar testing errors under different sizes of datasets. So far, we have 

emonstrated the viability of training a PINN with a strain energy 

oss for this simple linear digital material under a Dirichlet bound- 

ry condition. And it turns out that the same approach also func- 

ions properly under a Neumann boundary condition with a few 

odifications. 

Figure 2 d shows a same 1D digital material configuration as 

revious, but subject to a constant force of 1 at the right tip bend- 

ng the beam upward. The beam is assumed to possess a con- 

tant area moment of inertia of 0.6 at its cross section. Again, the 

inimum energy approach is adopted which has an expression of 

i n v [ 
1 
2 

∫ EI ( v ′′ ) 2 d x − F v tip ] . I denotes the area moment of inertia of

he beam cross section, v denotes the vertical displacement field, 

nd F denotes the constant force at the right tip. Notice that there 

s a work term associated with the tip force F in the system energy 

xpression when there is a Neumann boundary condition. To nu- 

erically evaluate the strain energy (the integral term) of a bent 

eam, we adopt the Hermite shape function [32] which assigns 

wo degrees of freedom at each node i : the beam deflection v i and

eam slope v ′ 
i 
, so that the beam smoothness is guaranteed. There- 

ore, the neural network has an input layer of size 10 to receive the 

aterial configuration E , an output layer of size 20 to predict the 

eflections and slopes at the nodes (except for the left tip which 

s fixed and has a slope of 0), and 3 hidden layers of size 30. The

eural network for the bending problem has more neurons in its 

idden layers because it is expected to have larger and more com- 

lex output responses. The activation is chosen to be the scaled ex- 

onential linear unit function. The model is trained for 80 epochs 

n the Adam optimizer on 900 sets of randomly generated input 

eatures with a batch size of 1 and a learning rate of 0.001. An- 
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Fig. 2. a A 1D digital material extension problem subject to a Dirichlet boundary condition. The goal is to have a PINN predicting the displacement responses based on 

different material configurations. b Comparison between numerical simulated material deformation and neural network predicted material deformation. Here, “x ” represents 

the coordinate, “u ” represents the displacement, “Sim” represents the simulation results and “Pred” represents the model predicted results. c Comparison between the 

supervised model and the PINN with different amount of data for the 1D tension problem. d A 1D digital material bending problem subject to a Neumann boundary 

condition. The goal is to have a PINN predicting the deflection responses based on different material configurations. e Comparison between numerical simulated material 

bending and neural network predicted material bending. Here, “x ” represents the coordinate, “u ” represents the deflection, “Sim” represents the simulation results and “Pred”

represents the model predicted results. f Comparison between the supervised model and the PINN with different amount of data for the 1D bending problem. 
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ther 200 sets of features are randomly generated and labeled for 

alidation and testing. 

The trained PINN shows an average deflection prediction error 

f 0.0056 for each node based on the testing set. Figure 2 e shows

 comparison between some predicted shapes of the beam and the 

round truth shapes. A reference supervised neural network with 

he exact same structure and hyperparameters reaches a testing er- 

or of 0.0055 after 80 epochs of training. The performance of the 

INN and the supervised model is also compared under different 

izes of datasets as discussed for the tension problem ( Fig. 2 f). 

nterestingly, the results of this bending problem have two ma- 

or characteristics. First, the supervised model greatly outperforms 

he PINN under a low data density (180 sets of training features). 

econd, using any batch size other than 1 would greatly reduce 

he training performance. It is believed that these phenomenons 

re caused by the work term − Fv tip which assigns a much larger 

radient on the right tip deflection than any other model outputs. 

his unbalanced gradient can introduce instability during the pa- 

ameter descent process which will be explored further in future 

tudies. 

The above discussions illustrate the energy-based physics- 

nformed models for intuitive 1D digital materials. However, real- 

orld problems can be more complex in the following aspects: 

igh order tensor operation for 2D or 3D geometries, nonlinear 

train as a result of large deformation, computational efficiency for 
3 
valuating and backpropagating the energy loss, which will be ad- 

ressed below. 

Figure 3 a shows a 2D digital material configuration that is sym- 

etrical about its vertical centerline. The material sheet is fixed at 

ts bottom edge and extended by a distance of 3 at its top edge (a

irichlet boundary condition). The entire material domain is dis- 

retized into 8 × 8 elements with a size of 1 × 1. The material el- 

ments obey isotropic linear elasticity where the modulus E stays 

n the range of 1–5, and the Poisson’s ratio ν stays in the range 

f 0.3–0.49. Figure 3 b gives a simple illustration of the physics- 

nformed model for this 2D digital material. Due to the symmetry 

nd boundary conditions, this configuration has a total of 64 fea- 

ures (2 material properties for each of the 32 elements on one 

ide) as the inputs for the neural network, and 90 nodal displace- 

ent responses (45 nodes on one side, each has 2 displacement re- 

ponses) as the outputs of the neural network. Note that there are 

3 nodal displacements constrained by the boundary conditions or 

he symmetry, so the actual prediction should be of size 67. How- 

ver, we set the output layer size to 90 for a better computational 

fficiency which will be explained in more details later. The loss 

unction for this neural network is again the elastic energy but in 

 2D expression mi n u [ 
1 
2 

∫ 
(ε) T E (ε)d Ω] . Here we use the 2D log- 

rithmic strain vector for ε to account for the nonlinearity under 

arge deformation, and E represents the 3 × 3 2D material stiffness 

atrix built upon modulus and Poisson’s ratio. The integral is eval- 
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Fig. 3. a A 2D digital material extension problem subject to a Dirichlet boundary condition. The entire 2D sheet has a size of 8 × 8, and is extended by a distance of 3 at 

its top edge. b A simple schematic showing the structure of the PINN for the 2D digital material. The model takes the modulus and Poisson’s ratio as inputs and outputs the 

vertical and horizontal displacements for each node. The total material strain energy is used as the loss function for training. 
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ated numerically using 4-point Gaussian quadrature on first-order 

D shape functions. As the problem size and complexity increase, 

equentially computing the element strain energy loss would be 

xtremely inefficient and more expensive than directly labeling the 

ata through simulations. Notice that the element strain energies 

nd Gaussian quadrature can both be computed parallelly. There- 

ore, when implementing the energy loss function, we can greatly 

ccelerate the forward and backward path of the neural network 

tilizing the batch tensor operation on a GPU. 

The following discussions will be based on Pytorch, but can be 

asily extended to other frameworks. First, we pre-construct mask 

ensors to filter the model outputs so that the displacement pre- 

ictions will obey the boundary conditions exactly. This masking 

peration blocks any gradients passing the boundary nodes. The 

asked output layer u is then reshaped (according to connectiv- 

ty) into a fifth-order tensor of size batch × 32 × 1 × 2 × 4 where 

he second dimension represents the 32 elements. The quadrature 

ensor is also pre-constructed with a size of batch × 1 × 4 × 4 × 2 

here the third dimension represents the 4 quadrature points. Us- 

ng Eq. (1) which multiplies the last two dimensions of the dis- 

lacement tensor and the quadrature tensor, we can calculate the 

isplacement gradient on the local coordinates ξ for each element 

t each quadrature point. 

∂u 

∂ξ
= 

[
u 11 u 12 u 13 u 14 

u 21 u 22 u 23 u 24 

]

⎡ 

⎣ 

−1 

4 

( 1 − ξ2 ) 
1 

4 

( 1 − ξ2 ) 
1 

4 

( 1 + ξ2 ) − 1 

4 

( 1 + ξ2 ) 

−1 

4 

( 1 − ξ1 ) − 1 

4 

( 1 + ξ1 ) 
1 

4 

( 1 + ξ1 ) 
1 

4 

( 1 − ξ1 ) 

⎤ 

⎦ 

T 

. (1) 

Next, the global displacement gradient ∂ u / ∂ x (it has a shape

f batch × 32 × 4 × 2 × 2) can be obtained by multiplying 

he local gradient tensor with the mapping tensor from ξ to x 

hich is a fixed quantity and can be pre-constructed before train- 

ng. The deformation gradient F equals to ∂ u / ∂ x + I where I is

 2 × 2 identity matrix. The Green’s deformation tensor C can 

hen be calculated as F T F which further equals to the square of 

he right stretch tensor U 

2 . And the nonlinear logarithmic strain ε
an be obtained by taking the square root and natural log on the 

igenspace of C (take operations on the eigenvalues of C , then re- 

onstruct the tensor). The strain tensor is then reshaped into a size 

f batch × 32 × 4 × 3. 

For the material stiffness matrix, the input features are aug- 

ented so that instead of passing E and ν and ν into the model, 

e pass E /(1 − ν2 ), E ν/(1 − ν2 ), and E /[2(1 + ν)] for each material

lement (the neural network has an input layer of size 96 instead 
4 
f 64). Thereafter, E (size of batch × 32 × 4 × 3 × 3) can be easily 

onstructed by gathering the corresponding input features on each 

f its rows without an element-wise value assignment. The strain 

nergy of each element at each quadrature point can now be par- 

llelly computed on GPU through tensor products between recon- 

tructed ε and E . The last step is to sum over the second (size of

2) and third (size of 4) dimensions of the energy tensor to obtain 

he total strain energy as the prediction loss. 

Every step discussed above is a pure tensor operation that is 

arallelable on a GPU and differentiable. However, the deforma- 

ion gradient F step may require extra care. Due to the neural net- 

ork’s ignorance of the physical world, the model is theoretically 

llowed to predict any displacement responses without constraints 

t the early stages of training. This can produce physically nonex- 

stent F which has a negative determinant. Although the model 

raining can still proceed for such erroneous F , the gradient up- 

ate for the neural network parameters are likely pointing towards 

 wrong direction and thus negatively affect the convergence rate 

nd stability. To overcome this issue, one method is to initialize 

he neural network so that the initial guesses of nodal displace- 

ent responses have small magnitudes compared to the size of 

n element (1 × 1), and the model parameters never enter the 

roblematic region. Another method we adopted is adding this ex- 

ra term − min(0, J ) to the loss function where J (Jacobian) is the 

eterminant of F . This term has no effect on training when J is 

ositive, but it penalizes and forces the neural network to produce 

ore positive J values whenever it predicts an erroneous F . 

With the above discussions in mind, the PINN for this 2D dig- 

tal material has an input layer of size 96, an output layer of size 

0, 4 hidden layers of size (96, 128, 128, 90), and an activation 

unction tanh(). The model is trained for 50 epochs on the Adam 

ptimizer on 4500 sets of randomly generated input features with 

 batch size of 5 and a learning rate of 0.001. Another 1000 sets 

f features are randomly generated and labeled for validation and 

esting. The trained PINN shows an average testing error of 0.021 

average R-squared value of 90.48%) for the nodal displacements on 

ach coordinate. Figure 4 a shows a comparison between some pre- 

icted shapes of the deformed 2D material and the ground truth 

hapes. A reference supervised neural network with the exact same 

tructure and hyperparameters reaches a testing error of 0.019 af- 

er 50 epochs of training. Nvidia RTX 2080 GPU is used to accel- 

rate tensor operations. To further examine the scalability of our 

nergy loss, we construct neural networks for different mesh con- 

gurations as seen in Fig. 4 b. The neural network size scales lin- 

arly with the number of nodes. All these models with different 

izes are each trained on 4500 sets of randomly generated input 



Z.Z. Zhang and G.X. Gu Theoretical and Applied Mechanics Letters xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: TAML [m5G; March 17, 2021;4:5 ] 

Fig. 4. a Comparison between numerically simulated material deformation and neural network predicted material deformation for the 2D digital material. b Computation 

cost of one epoch of model training under different mesh. The orange dashed lines indicate the symmetry axis. 
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[

eatures for one epoch. The corresponding real-world time is plot- 

ed in Fig. 4 b which scales linearly with respect to the number 

f nodes. Due to the nonlinearity and stochasticity of the neural 

etwork training process, it is difficult to bound the required num- 

er of epochs till convergence and will be explored in future work. 

owever, the results still show the potential of the energy-based 

INN to be more efficient than generating simulation labels (simu- 

ation cost is typically O ( n 2 )- O ( n 3 ) where n represents the number

f nodes [33] ). 

In summary, we successfully trained PINN models for DM using 

he minimum energy criteria instead of the governing equation as 

he loss function. The method shows comparable accuracy to the 

upervised models on the 1D tension, 1D bending, and 2D tension 

roblems discussed in this paper. Results show that our proposed 

INN can properly approximate the logarithmic strain and fix any 

rroneous deformation gradient by adding a hinge loss for the Ja- 

obian. Moreover, the loss evaluation step can be parallelized over 

he elements and quadrature points on a GPU through proper ten- 

or rearrangements on input features and outputs responses. The 

ingle epoch computation cost of the optimized algorithm scales 

inearly with respect to the number of nodes (or elements) in a DM 

esh. This work shows the possibility of training PINNs for digital 

aterials accurately and efficiently, allowing direct ML exploration 

f next-generation composite design without the necessity of ex- 

ensive multi-physics simulations. 
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