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ABSTRACT: Graphene oxides have exhibited alluring potential for state-of-the-art applications such as biomedical devices and
functional nanocomposites. The types and concentrations of oxygen-containing functional groups are fingerprints of graphene
oxides, dictating the properties and usage of the nanomaterial. Compared to pure graphene, the properties of graphene oxides are
more challenging to model from a theoretical perspective, mainly because of the profound but implicit influences of the functional
groups within. Machine learning is a potent method to uncover the hidden structure−property relations and to accelerate material
discovery. Here, we develop a machine learning-based strategy to determine the functionalization properties of monolayer graphene
oxides, labeled by the oxygen-to-carbon ratio and relative concentrations of functional groups. Trained by mechanical responses
upon uniaxial tension computed by reactive molecular dynamics simulations, our proposed gradient boosting machine learning
model can accurately identify the chemical composition of graphene oxides in the reserved data set. The difference in prediction
accuracies between oxygen coverage and functional group composition is rationalized by graphene oxide molecular mechanisms. The
proposed data-driven strategy can contribute to the predictive modeling of functionalized two-dimensional materials of a broad
variety.
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1. INTRODUCTION

The discovery of graphene1 has sparked significant research
and industrial interest due to its extraordinary electronic,2,3

thermal,4,5 and mechanical6−10 properties. Graphene oxide
(GO), one of the best-known graphene derivatives, opens up
avenues for a broad spectrum of novel, tunable properties11−13

and is widely used in state-of-the-art applications such as
biomedical devices,14−16 flexible electronics,17,18 and functional
nanocomposites.19,20 GO is composed of a graphene basal
plane and oxygen-containing functional groups such as epoxide
(−O−), hydroxyl (−OH), carbonyl (CO), and carboxyl
(−COOH) groups. Analysis has shown that GO consists
primarily of epoxide and hydroxyl groups and that only a small
amount of carbonyl and carboxyl groups is present on the
edges of GO sheets.21 The absolute and relative concentrations
of epoxide and hydroxyl groups can be viewed as the

fingerprint of GO, determining multiple important physical
properties and therefore the potential usage of the nanoma-
terial. The control of oxygen content, epoxide-to-hydroxyl
group ratio, and spatial distribution of functional groups has
enabled rational material design and optimization.22,23

Compared to pure graphene, the mechanical properties of
GO are more challenging to model from a theoretical
perspective, mainly because of the profound but implicit
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influences of the functional groups within. For example,
hydroxyl groups cause GOs to behave in a brittle manner,24

while epoxide groups may potentially increase the ductility via
a mechanochemical epoxide-to-ether functional group trans-
formation.25,26 In addition, with the same amount of oxygen
atoms, different epoxide-to-hydroxyl group ratios yield diverse
ultimate strengths.27 Last but not least, the spatial distribution
of functional groups triggers specific mechanochemical
reactions under certain loading conditions,26 which in turn
affect the properties of the GO sheet. The correlation between
collective properties of GO and the amount and types of
functional groups, however, is not well understood.
Machine learning is a potent method to uncover the hidden

structure−property relations and to accelerate new material
discovery,28−35 which has been applied to study nanomaterials
of a broad variety, including GO. Motevalli et al. used
classification, regression, and causal inference to understand
and predict the causes of defects in GO.36 Motevalli et al. used
multiple clustering machine learning models to determine
representative structures of GO.37 Amani et al. used regression
models to estimate the temperature-dependent moduli of GO-
reinforced nanocomposites.38 However, the potential of
machine learning has not been sufficiently used in predicting
the degree and type of oxidation, which is one of the most
defining and fundamental features of GO. The investigation of
functionalization can shed light on how GOs can be optimally
used in multiple research and technological fields such as
flexible electronics, nonlinear optics, gas storage, and

lubrication. Some examples are as follows. First, the probe of
oxygen coverage percentage can help determine if the GO of
interest is a semiconductor or an insulator. Carbon atoms
comprising of pure graphene are of sp2 hybridization. Hydroxyl
and epoxide groups are both responsible for the hybridization
change from sp2 to sp3. A substantial oxygen coverage renders
GO insulating, while a low oxygen coverage makes it a
semiconductor.39 Second, the degree and type of oxidation can
be used to estimate band gaps, which contain information of
optical modulation. The combination of sp2 and sp3 hybrid-
ization can break the symmetry and therefore result in band
gaps.40 Third, the knowledge of functional groups can be used
to evaluate the applicability of GOs in gas storage. The
reaction between hydroxyl groups and boronic acids can link
GO layers together, forming a layered structure that provides
room for gas storage.41 Fourth, the degree and type of
oxidation can shed light on the friction coefficient of GO-based
lubricant additives. It is shown that GO containing a high
percentage of epoxide groups exhibits a better lubrication
ability than GOs with a high content of hydroxyl groups.42 The
above applications can be much better realized if we can access
the functionalization properties of GO in quantitative details.
In this paper, we develop a machine learning-based strategy

to determine the functionalization properties of monolayer GO
sheets, which are quantified by two nondimensional features:
the oxygen-to-carbon atom ratio and the fraction of epoxide
groups. Data are prepared based on the mechanical responses
upon a uniaxial tensile load, computed by molecular dynamics

Figure 1. Schematic of GO sheets and mechanical responses upon tensile loading. (a) Schematic of the GO sheet with a side length of L. “a” and
“z” refer to the armchair and zigzag directions of the GO basal plane. (b) Shape of the GO sheet upon full relaxation at a temperature of 300 K. (c)
Comparison between the stress−strain curves of the present MD simulation and the result in ref.26 The inset shows the GO structure used in this
simulation case. (d) Stress−strain curves of GO sheets of various sizes with fixed parameters φO ≈ 0.253 and φf ≈ 0.561.

ACS Applied Nano Materials www.acsanm.org Article

https://dx.doi.org/10.1021/acsanm.1c00384
ACS Appl. Nano Mater. 2021, 4, 3167−3174

3168

https://pubs.acs.org/doi/10.1021/acsanm.1c00384?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.1c00384?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.1c00384?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acsanm.1c00384?fig=fig1&ref=pdf
www.acsanm.org?ref=pdf
https://dx.doi.org/10.1021/acsanm.1c00384?ref=pdf


(MD) simulation with a reactive force field. A gradient
boosting machine learning model, which is built up by forming
an ensemble of weak prediction submodels in a stagewise
fashion, is trained and used to predict the functionalization
properties of unknown GO configurations. Machine learning
features are extracted from both stress−strain relations and
potential energy-related metrics, which successfully circumvent
the uncertainty from the spatial distribution of functional
groups. Physical insights into failure mechanisms associated
with different functional groups are provided to rationalize
prediction errors. This study demonstrates the power of
machine learning models in uncovering complex, hidden
structure−property relations in GO, offering possibilities for
material discovery of a broader range using data-driven
approaches.

2. RESULTS AND DISCUSSION

2.1. GO Configurations and MD Simulation. GOs in
the present study are configured by following four sequential
steps: (1) construction of a graphene basal plane; (2)
assignment of epoxide groups; (3) assignment of hydroxyl
groups; and (4) decoration of carbonyl and carboxyl groups on
graphene basal plane edges. For the graphene basal plane,
square-shaped monolayer graphene sheets with a side length of
L = 3 nm are constructed, consisting of 446 carbon atoms in
total and 336 nonedge atoms. For the epoxide group
assignment, each epoxide group resides on two neighboring
nonedge carbon atoms and there are 226 such pairs in total in
the graphene basal plane. Additionally, the sp3 hybridization
requires that one carbon atom cannot be associated to two
epoxide groups. Herein, Np pairs are randomly picked from all
226 possibilities and pairs that violate the sp3 hybridization
requirement are removed from selection. For the hydroxyl
group assignment, hydroxyl groups are hosted by nonedge sp2

atoms (not associated to any epoxide group). Na nonedge
carbon atoms that are not associated to epoxide groups are
randomly picked to host hydroxyl groups. The numbers of
epoxide and hydroxyl groups assigned to both sides are roughly
equal. Lastly, the edges of the graphene basal plane are
decorated with carbonyl and carboxyl groups, where the
numbers of both functional groups obey a uniform distribution

(0, 20) and the locations are random.
To quantify the degree and type of oxidation independent of

the absolute GO sheet size, the following two nondimensional
features are used to label GO sheets: (1) oxygen-to-carbon
atom ratio φO, the ratio between total number of oxygen and
carbon atoms φO = NO/NC, where NO and NC are the total
number of oxygen and carbon atoms and (2) fraction of
epoxide group φf, the ratio of the number of epoxide groups to
the total number of hydroxyl and epoxide groups φf = N−O−/
(N−O− + N−OH), where N−O− and N−OH are the total number
of epoxide and hydroxyl functional groups. φO denotes the
intensity of oxidation, while φf quantifies the relative
concentrations of two distinct functional groups. For example,
φf → 0 and φf → 1 indicate hydroxyl-rich and epoxide-rich,
respectively.
Mechanical responses of various GO sheets upon uniaxial

tensile loads are computed by reactive MD simulations, of
which the implementation details are provided in the
Supporting Information. The structure of GO in Figure 1(a)
immediately after full relaxation at 300 K is shown in Figure
1(b), indicating that GO upon loading is not flat and shows a
zigzag sheet-like structure. First, to validate the simulation
setup, the stress−strain curve of a GO sheet with a side length
of L = 3 nm is recorded and compared against a stress−strain
curve in ref.26 with L = 2 nm. To draw a fair comparison with
the reported results, following ref.,26 the fraction of oxidized
carbon atoms of all four GO sheets is set as 0.36 and the

Figure 2. Mechanical responses of four GO sheets with φO = 0.253 and φf = 0.561 and random spatial distributions of functional groups. (a−d)
Structures of four exemplar GOs. (e) Stress−strain curves and (f) system potential energy evolutions.
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epoxide-to-hydroxyl functional group ratio is set as 4:1. Also,
the same effective thickness te = 0.75 nm is used to calculate
the normal stress component in the zigzag direction σz.

26 The
comparison result is shown in Figure 1(c), which exhibits a
good agreement despite not knowing the exact locations of
functional groups and the difference in size. The von Mises
stress σ is used for the rest of stress−strain curves in this paper,
of which the calculation method is provided in the Supporting
Information. Next, the effect of GO size is investigated. We
perform MD simulations of GOs with side lengths of 3, 5, 7,
and 10 nm, with fixed generic parameters φO ≈ 0.253 and φf ≈
0.561, of which the results are shown in Figure 1(d). As can be
seen, despite the difference in size and the uncertainty in
functional group distribution, the results agree well in the
general trend and the ultimate strength, indicating the
reliability and reasonable dimensional scalability of the current
simulation settings. Despite larger GO sheets (L = 7 nm and L
= 10 nm) render smoother stress−strain curves, L = 3 nm
enjoys the advantage of much reduced computational
expenses, which makes this choice of GO size more realistic
in the preparation of a large amount of data. This also poses
greater challenges to machine learning implementation to
overcome the fluctuation issue, which is no less uncommon in
an experimental setting. A successful prediction with L = 3 nm
can indicate good performance with noisy data. In addition, L
= 3 nm creates more variations of functional group distribution
compared to L = 2 nm in the reported results,26 which
facilitates the generation of more diverse GO configurations
that benefit the training and extrapolation ability of the
machine learning model. The temperature effect toward the
mechanical responses and the stability of GO is also
investigated. Stress−strain curves of GO with parameters φO
= 0.253 and φf = 0.561 under various temperatures (100, 200,
300, 400, and 1000 K) are recorded and are shown in Figure
S1(a). The results show that as the temperature increases, GO
is slightly softened and the mechanical properties are not
subject to major changes. Figure S1(b) shows the GO
structure immediately after relaxation at T = 1000 K, which
suggests that no thermal instability has occurred. To
approximate a realistic setting, the rest of the MD simulations
in this paper are performed at 300 K.
It is critical that a specific combination of the oxygen-to-

carbon atom ratio and the epoxide-to-hydroxyl group ratio is
not sufficient to reflect a single GO configuration because the
parameter pair does not possess information of locations of
functional groups. In fact, there exists an effectively infinite
number of different functional group spatial distributions,
whose effect is nontrivial. The effect of distribution can exist
when investigating multiple randomly generated GO sheets
with the same φO and φf. To this end, four GO sheets with φO
≈ 0.253 and φf ≈ 0.561 but randomly diverse functional group
distributions are simulated, of which the structures after
relaxation are shown in Figure 2(a−d). The stress−strain
curves of these GO sheets are shown in Figure 2(e), which
indicates that the functional group distribution has a profound
effect on the mechanical properties of GO. Although the
ultimate strengths are roughly on the same level, the ductility
and curve shape differ dramatically. This finding implies that
one unique combination of φO and φf does not yield one
unique mechanical response. Therefore, to reliably predict φO
and φf using mechanical responses of GO, more useful features
need to be used besides the ones extracted from stress−strain
relations.

To this end, the energy-related phenomena are visited. The
system potential energy evolutions of the four GO sheets
mentioned above are computed, as shown in Figure 2(f). It is
shown that there are substantial differences in these curves.
GO sheets with the same φO and φf are characterized by
distinct starting energy (energy at thermal vibration before
subject to loading), maximum energy increase, and the general
curve shape. It can be assumed that these differences in strain−
strain relations and system potential energy evolutions stem
from different functional group distributions. It is envisioned
that by extracting features from both stress−strain curves and
potential energy evolutions, a unique (or approximately
unique) combination of φO and φf may be obtained, which
makes machine learning-based prediction possible. If so, the
issue of random functional group spatial distribution can be
circumvented. It is worth noting that energy-related quantities
can be more challenging to measure in experiments compared
to mechanical stress and strain. To this end, when extracting
features from potential energy curves, we will take the
experimental viability into account.

2.2. Machine Learning Results. Our machine learning
model implementation using computational tensile test results
can be broken down into the following three phases: (1)
sample preparation, (2) feature extraction, and (3) model
training and testing. For sample preparation, 1570 sample
instances of mechanical responses of GO are computed for
training and validation, while 100 sample instances are
reserved for testing. The distributions of all 1670 sample
points on the N−O−−N−OH plane and the φO−φf plane are
shown in Figure S2. While φf naturally ranges from 0 to 1, φO
ranges from 0.1 to 0.8. In an experimental setting, φO varies
from 0.25 to 0.75,40 which has been covered by the range of
our sample space. Data for training and validation are
randomly shuffled together and then separated into Ntraining =
1470 and Nvalidation = 100 before use, where Ntraining and
Nvalidation are the number of training and validation data. During
training, the shuffle-and-split process is repeated 20 times
where each time is based on a different random seed. The aim
of this practice is to avoid good results by chance and to ensure
better generalized results. Test data totaling Ntest = 100 are not
involved in the shuffling with training and validation data,
implying that the test data represent future unseen
configurations. A good test accuracy can indicate promising
extrapolation ability of the machine learning model.
For feature extraction, the features to extract from both

stress−strain relations and potential energy properties
comprise of (1) ultimate strength σu, (2) strain at ultimate
strength εu, and (3) total potential energy at room-temper-
ature-free vibration UV (the starting energy of potential energy
evolution). In an experimental setting, vibrational energy
distributions can be measured using a scanning force
microscope43 or by interferometry,44 after which the total
potential energy can be computed. From a physics point of
view, the above features can be related to the target properties,
namely, the oxygen-to-carbon atom ratio and the relative
concentrations of functional groups, in the following ways.
First, ultimate strength σu is dependent on the sheer amount
and types of bond interactions due to functionalization. For a
pure graphene, the ultimate strength is dictated only by
carbon−carbon (C−C) bonds formed by sp2 carbon atoms.
Oxidation not only adds new carbon−oxygen (C−O) covalent
bond interactions but also disturbs the sp2 carbon atom lattice
by introducing sp3 hybridization, thus affecting the ultimate
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strength. Second, strain at ultimate strength εu is impacted by
both the amount of hydroxyl and epoxide groups, where the
former tends to result in brittleness and the latter can trigger
mechanochemical epoxide-to-ether functional group trans-
formation to enhance ductility. The coexistence of two
functional groups gives rise to uncertainty. Third, the total
potential energy at room-temperature-free vibration UV is
highly related to molecular weight and therefore to oxygen
percentage. The general trend is that the higher the oxygen
percentage, the higher the molecular weight, the lower the
potential energy when GO is at rest. In addition, the relative
concentrations of functional groups also play an implicit role in
affecting the potential energy. σu, εu, and UV as a function of
φO and φf are shown in Figure 3, suggesting that UV is the
strongest indicator of GO functionalization, followed by σu and
εu.
The procedure of machine learning model training and

testing is described as follows. For the ith sample instance, the
sample vector can be formulated as σ ε= [ ] ∈ Uxi i i iu, u, V,

T 3

and the label vector can be formulated as φ φ= [ ] ∈ yi i iO, f,
T 2

. A gradient boosting machine learning model, which is built by
forming an ensemble of weak prediction submodels in a
stagewise fashion, is used to map the above features to φO and
φf. Tunable hyperparameters include learning rate (shrinkage
factor) α and the number of boosting stage to perform M.
Algorithmic details of the gradient boosting model are
provided in Table S1. The framework of machine learning
implementation is summarized in the flow chart shown in
Figure 4. The coefficient of determination R2 as well as the
mean squared error (MSE) are used as metrics to quantify the
model predictions. Particularly for the machine learning
training session, the averages of R2 and MSE over 20 random
shuffle-and-splits, denoted as Ravg

2 and MSEavg, are used as
metrics. The hyperparameter tuning results of φO and φf in the
training session are shown in Figure S3. The results provide an
optimal hyperparameter combination α* = 0.11 and M* = 70,
scoring Ravg

2 = 0.980 and MSEavg = 0.000488 for φO and Ravg
2 =

0.906 and MSEavg = 0.00661 for φf. Convergence with respect
to the size of the training data set is shown by plotting Ravg

2 and
MSEavg of φO and φf on the validation data as a function of the
number of training data, as shown in Figures S5,S6.
After the training process, predictions are performed on the

reserved test set using optimal hyperparameters α*and M*,
which yields R2 = 0.978 and MSE = 0.000499 for φO and R2 =
0.870 and MSE = 0.0103 for φf, slightly inferior to the
performance on the validation set. Prediction results of φO and

φf are shown in Figure 5. The differences between the
predicted label and the true label (denoted as dO = φO − φ̂O
and df = φf − φ̂f, where φ̂O and φ̂f are the predicted labels) of
all 100 sample points in the test set are plotted against the true
labels, as shown in Figure 5(a,b). For φO, the difference
between the predicted label and the true label for most sample
points ranges between +0.06 and −0.06, and for φf, the
difference for most sample points ranges between +0.02 and
−0.02 (excluding one sample point with a true label φf = 1.0).
For both labels, no dependency of prediction error on the
absolute value of true label is detected. Based on the results of
Figure 5(a,b), histograms of |dO| and |df| are constructed, as
shown in Figure 5(c,d). For φO, 63% of GO sheets achieved an
error of <1%, while 99% of GO sheets achieved an error of
<5%. For φf, 58% of GO sheets achieved an error of <5%,
while 95% of GO sheets achieved an error of <20%.
Additionally, a kernel ridge regression (KRR) model, which
allows to progressively build up model complexity without
adding to the computational cost (the kernel trick), is used to
make predictions. Tunable hyperparameters include poly-
nomial kernel degree p and regularization parameter λ. Using
the optimal hyperparameters after tuning, KRR achieved an
inferior prediction performance compared to gradient
boosting. The algorithmic details and the hyperparameter
tuning process of KRR are provided in the Supporting
Information. When setting λ = 0 and p = 1, KRR equates a

Figure 3. Extracted features as a function of φO and φf. (a) σu, (b) εu, and (c) UV as a function of φO and φf. Data are from the training and the
validation sets.

Figure 4. Flow-chart presentation of the machine learning procedure.
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multivariate least squares regression, of which the results are
also provided in the Supporting Information.
One observation regarding the prediction of φO and φf is

that the former can be more accurately predicted with models
varying from gradient boosting to multivariate least squares
regression, while the latter is far more demanding. In fact,
using only UV, our gradient boosting model can yield a R2 of
∼0.9, as shown in Figure S7. A R2 close to 1 can be achieved if
all features are used for both gradient boosting and KRR
models. Our rationale is that φO is directly related to the
molecular weight of GO, which poses a major effect on the
potential energy especially when GO is at rest (when UV is
extracted). Assisted by features related to mechanical stress
and strain, φO can be accurately pinned down. Meanwhile, φf
contains little molecular weight information. The composition
of functional groups does not have a significant impact on the
potential energy as molecular weight, reflected by the failure to
predict φf with only UV. Instead, φf dictates the types of
bonding interaction, making the difference between hydroxyl
and epoxide group properties to play a major role under
different φf values. For example, the difference in failure
mechanisms of hydroxyl and epoxide groups begins to take
effect. Hydroxyl groups lead to a brittle failure mechanism
where only C−C bonds are broken. Each hydroxyl group
attaches to only one carbon atom on the basal plane, and the
failure associated with a hydroxyl group happens only to one of
the C−C bonds in its immediate vicinity. The C−O bonds in
hydroxyl groups remain intact at all times. Conversely, epoxide
groups can result in a progressive, ductile failure. Each epoxide
group attaches to two bonded carbon atoms on the basal plane.
If stress causes the bond between these two carbon atoms to
break, the two initially bonded carbon atoms can still be

connected by two C−O bonds, transforming the epoxide
group to a new ether group. These two C−O bonds can
continue to stretch and bear loads. After the stress reaches the
C−O bond strength, one of the two C−O bonds will break
and result in the failure of the local area. It is possible that the
C−O bond strength is never reached. This happens when a
catastrophic failure of the GO sheet has already taken place
caused by crack propagation elsewhere. In addition, the
mechanical properties of epoxide groups are sensitive to
orientation. If the two bonded carbon atoms are aligned in the
stretching direction, the epoxide group is more likely to fail; if
the two bonded carbon atoms are perpendicular to the stretch,
the epoxide group is less likely to fail. The above mechanisms
together with random functional group spatial distributions
increase the problem complexity drastically. One possibility to
tackle the elevated complexity is to train neural networks with
entire stress−strain curves as the input vectors, as inspired by
ref.45 We will consider neural networks in our future work that
involves more complex systems and physics.

3. CONCLUSIONS

In this paper, we develop a machine learning-based strategy to
determine the functional group contents of monolayer GO
sheets. By constructing a feature space with stress-based and
energy-based mechanical responses computed by reactive MD
simulations, the oxygen-to-carbon atom ratio and the relative
concentrations of epoxide and hydroxyl groups in GO are
predicted by gradient boosting. Despite the uncertainty
brought by the random, uncontrolled functional group spatial
distributions, our feature selection from both stress−strain
relation and system potential energy enables the machine

Figure 5. Evaluation of machine learning prediction accuracies of φO and φf on the test data. Scatter plots of (a) dO against φO and (b) df against φf.
Histograms of (c) |dO| and (d) |df|. The data point with a df of ∼−0.7 is not represented in (d).
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learning model to overcome this issue. The best prediction
results of the reserved test data show that for the oxygen-to-
carbon atom ratio, all test samples have achieved a prediction
error of <5%, while for the fraction of epoxide groups, 95% of
the test samples have achieved a prediction error of <20%. The
difference in prediction accuracies between the oxygen
coverage and the functional group composition is rationalized
by GO molecular mechanisms. The proposed data-driven
strategy may also shed light on the predictive modeling and
identification of functionalized two-dimensional materials of a
broad variety. In the current research, the targeted features
mainly focus on the chemical composition of GOs and do not
reflect structural properties such as locations of specific
functional groups, which, together with predicting properties
of multilayer and defect-containing GOs, will be addressed in a
future work.
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