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ABSTRACT: Additive manufacturing technologies have pro-
gressed in the past decades, especially when used to print
biofunctional structures such as scaffolds and vessels with living
cells for tissue engineering applications. Part quality and reliability
are essential to maintaining the biocompatibility and structural
integrity needed for engineered tissue constructs. As a result, it is
critical to detect for any anomalies that may occur in the 3D- " =
bioprinting process that can cause a mismatch between the desired Enes
designs and printed shapes. However, challenges exist in detecting

the imperfections within oftentimes transparent bioprinted and complex printing features accurately and efliciently. In this study, an
anomaly detection system based on layer-by-layer sensor images and machine learning algorithms is developed to distinguish and
classify imperfections for transparent hydrogel-based bioprinted materials. High anomaly detection accuracy is obtained by utilizing
convolutional neural network methods as well as advanced image processing and augmentation techniques on extracted small image
patches. Along with the prediction of various anomalies, the category of infill pattern and location information on the image patches
can be accurately determined. It is envisioned that using our detection system to categorize and localize printing anomalies, real-time
autonomous correction of process parameters can be realized to achieve high-quality tissue constructs in 3D-bioprinting processes.
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1. INTRODUCTION

Additive manufacturing, otherwise well-known as 3D printing,
has been widely applied to various fields including the
aerospace industry, biological engineering, and autonomous
vehicles.'™® Recent advances in tissue engineering have
realized 3D bioprinting of biolo_gical components such as
living tissues and human organs.”” 3D bioprinting is now
actively applied to create biocompatible materials and
structures for functional living cells. Among the bioprinted
materials, hydrogels are one of the most widely applied

hydrogel such as dimensional accuracy, and printability."*
Naghieh et al. focused on the influence of hydrogel
composition and printing parameters on the printability of
scaffolds. Dimensional accuracy including pore size and strand
diameter as well as printing irregularity are explored in the
15 s ) . . o
study. > Anomalies including discontinuous printing rasters,
improper line width, and bubbles are commonly seen in the
S 16,17 . .
printing process. While research has been actively
conducted on identifying these anomalies, challenges still lie
in the efficiency and accuracy of the assessment process. The

materials for their cross-linking capability to create scaffold
structures for tissue engineering applications.'”"" For bio-
logical constructs such as tissues, it is critical to obtain a high-
quality print as close to the desired design as possible to ensure
robust functionality. However, unlike typical 3D-printing
methods using polymers or metal powder, the challenge of
achieving high-quality prints during the 3D-bioprinting process
lies in understanding the rheological property of the hydrogels
as they are sensitive to the additive concentration (e.g.,
methylcellulose, alginate) as well as the choice of printing
parameters during fabrication.'” For example, studies have
shown a catastrophic failure of bioprinted parts such as the
collapse of filament'® and broken lines'* due to suboptimal
printing parameters. Hence, numerous studies have explored
the effects of printing parameters on part quality. He et al
analyzed the impact of printing factors including extrusion
pressure, feed rate, printing distance on the printing quality of
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current anomaly evaluation process faces challenges when it
comes to efficiency and accuracy; it requires heavy
postprocessing analysis after the print is finished and largely
relies on the experience of the operator, thereby causing
wasted materials and delaying the discovery of anomalies.

In this paper, an anomaly detection system is established to
recognize and distinguish anomalies accurately and efliciently
in a layer-by-layer configuration for bioprinted materials. Three
major anomalies including discontinuity (broken raster),
nonuniformity (unsmoothed surface), and irregularity (im-
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Figure 1. (a) Experimental setup of the anomaly detection system for a 3D-bioprinting platform. (b) Raw image data showing four different infill
pattern examples and three anomaly cases. (c) An illustration visualizing the image processing procedure. The area of interest shown in the green
bounding box is first determined and cropped into an 800 X 800 pixels size. Smaller image patches (input images) are then extracted uniformly and

randomly.

proper line width) are explored for the first layer of the print
which is considered the important foundation of the entire
print. Due to the transparent and complex features of these
anomalies, machine learning methods are actively incorporated
for this problem to explore and distinguish the underlying
hidden patterns behind real-time printing images. Recently,
machine learning methods have progressed dramatically in
terms of efficiency and have seen promising applications in
predictive materials modeling, advanced manufacturing,
autonomous vehicles, and biomechanics, among many
others."®™** Specifically, two baseline models as well as two
advanced convolutional neural network (CNN) models are
implemented using our collected and processed image data set.
Evaluation metrics are analyzed on the training results as well
as testing data set to validate and compare the performance of
each model. Moreover, studies are further focused on analyzing
a single anomaly and a specific infill pattern using evaluation
factors and visualization methods. Additionally, discussions are
conducted on the impact of printing parameters on printing
quality and methods to find the optimal combination of
printing parameters. Our work has the following contributions:
1) development of an anomaly detection system for
bioprinting in a layer-wise configuration; 2) realization of an
efficient and accurate anomaly detection model based on
machine learning methods; and 3) demonstration of applying
machine learning methods to transparent object detection. The
paper is organized as follows. Section 2 discusses the process of
image data collection, the methods utilized for classification
models, and metrics used for results evaluation. Section 3
shows, compares, and visualizes the training results as well as
the performance from the perspective of an overall anomaly,
individual anomaly, and anomalies in different infill patterns.
The effects of printing parameters on printing quality and
corresponding optimizing methods are also discussed. Section

4 summarizes and concludes the work and proposes future
perspectives.

2. MATERIALS AND METHODS

In this section, the experimental setup and the preparation of the
image data set of this study used to train our machine learning models
will be illustrated in detail. Moreover, four anomaly classification
models as well as corresponding evaluation metrics are introduced.
Experimental Setup and Image Data Preparation. In this
paper, an extrusion-based bioprinter using an air pressure (pneumatic
dispensing) method is conducted through CELLINK BIO X and
GelMA A (gelatin methacrylate and alginate) material. ¢ During the
printing process, a temperature-controlled printhead is equipped to
adjust and maintain the required printing temperature needed for the
material. The printing temperature of GelMA A is set to 26 °C in the
experiments. At the side of the printhead, a camera is mounted on the
moving platform and captures an image after each printing layer is
finished. A detailed display of the experimental setup is shown in
Figure 1(a). As the quality of the first layer is rather significant and
determines the foundation of the final print as mentioned in the
Introduction section, the full image of the first layers is captured and
recorded as raw data. By manually adjusting the extrusion pressure
and printing speed, a total of 240 raw images of data are collected
with three anomalies (discontinuity, irregularity, and nonuniformity)
under four different infill patterns including grid, rectilinear, gyroid,
and honeycomb (with each pattern having 60 raw images) (Figure
1(b)). The determination of the data set size involves two aspects.
First, the collected data set needs to cover all the different
combinations of three anomalies under varying extents. Second, the
size of the data set is chosen to balance the amount of labeling work
and achieving a satisfying anomaly detection performance. Addition-
ally, the adjusting range of extrusion pressure and printing speed is
10—20 kPa and 3—8 mm/s, respectively. It is worth noting that
different anomalies can occur due to the unexpected clogging of the
print nozzle caused by temperature variation even under the same
printing parameters. From the experimental setup, the main body of
the hydrogel cartridge is kept in the temperature-controlled printhead,
whereas the nozzle is exposed to the environment. Hence, the labeling
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Figure 2. (a)b) Bar charts summarizing detailed anomaly information for both full and testing data sets. The number of labels for three types of
anomalies under four infill patterns is counted. (c) Flow diagram showing the architectures of applied CNN models. The self-designed CNN
architecture is illustrated at the top, and the pretrained model is shown at the bottom. Image size information is displayed in the vertical direction,

and legends are marked in the bounding box with a dashed line.

process will be based on the features of the actual prints instead of
direct mapping from the process parameters. Specifically, image
patches with good printing quality will be first labeled as benchmarks.
After that, anomalies such as thinner or thicker rasters are labeled as
irregularity, and unsmoothed surfaces are labeled as nonuniformity.
The labeling process will be performed by one operator to minimize
the noise in the labeling process. The process parameters are adjusted
randomly in the given range to create different extents of various
anomalies. In general, increasing printing speed tends to generate
discontinuity, while irregularity and nonuniformity are likely to occur
under higher extrusion pressure. The raw image data is further
cropped into an 800 X 800 pixels square image with the location of
interest shown in the green bounding box of Figure 1(c). For each
pattern, the processed images are randomly selected into training,
validation, and testing data sets under the ratio of 7:2:1. Hence, the
number of images in each data set is 42, 12, and 6 correspondingly. In
order to locate the anomalies more accurately, 16 smaller image
patches (200 X 200 pixels) are extracted uniformly in spatial
distribution, as well as another 16 patches are obtained randomly
within the processed image. The size of image patches is larger than
the grid size of the grid pattern to avoid selecting blank images. It is
worth noting that smaller image patches yield a higher resolution
when it comes to anomaly detection, but at the same time, the
labeling work on the image data preparation process is increased.
Hence, the size of the small image patches is chosen to balance both
infill pattern complexity and labeling difficulty. The extracted patches
are regarded as input images of the machine learning model and are
further labeled using the one-hot encoding method with anomaly
information (3 elements), location information (4 elements), and
location information (whether the perimeter is inside the patches, 1
element). For example, anomaly information “110” indicates the
batch image has both discontinuity and irregularity anomaly,
following with location information “1000” standing for the grid
infill pattern, and the last element ‘1’ means the perimeter is in the
image. If such conditions are not fulfilled, the element is then labeled
as ‘0. The location information is included to distinguish the
condition that an infill raster is tied parallel together with the

perimeter from an irregularity anomaly. Lastly, Figure 2(a,b)
summarizes the detailed anomaly information on the full data set
and testing data set, presenting the number of labels for each anomaly
under four infill patterns.

Anomaly Classification Models. In this section, four models are
evaluated on the anomaly classification problem. The first one is a
constant predictor that establishes the difficulty of the task and
provides the performance that the rest of the models must exceed.
The second model is a linear support vector machine (SVM) classifier
that decides whether each individual defect is present in the image
patch. The SVM model is trained on the histogram of oriented
gradients (HoG) features”” extracted from the images; the HoG is
chosen for its competitive (pre-CNN) performance on large-scale
image recognition data sets.”® The SVM model offers a strong
baseline that motivates the use of modern convolutional neural
network (CNN) models. The architectures of the applied CNN
models are shown in Figure 2(c). Specifically, the third model is a self-
designed four-layer CNN network to verify the performance of a
shallow network on this problem. Lastly, the fourth model is a
ResNeXt-50,% the largest variant of which has obtained state-of-the-
art results on ImageNet.30 However, given the rather small size of the
bioprinting data set, this model uses the final layer of a pretrained
ResNeXt-50 as a static feature extractor that feeds into a small,
optimized multilayer perceptron as shown in Figure 2(c); despite
ImageNet images being full-color and of natural scenes, the low-level
pretrained feature detectors are still applicable.>’ The neural network
models are trained to predict the defect logits (anomaly information),
the printout’s pattern (e.g., grid, honeycomb, pattern information),
and whether the image patch is viewing the interior or exterior of the
print (location information). The objectives jointly use the Adam®
optimizer in a multitask setup®® to regularize the model in the present
small-data regime. To further decrease the possibility of overfitting, in
each epoch, an image patch is resized to 256 pixels, randomly cropped
to 224, and randomly flipped; more advanced data augmentation
strategies like color jitter and rotation are not applied since they do
not match transformations that would be seen in test data. Moreover,
the output of the model is further decomposed and standardized into
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Table 1. Performance Summary of the Classification Models

data set model method anomaly accuracy
validation baseline 1 constant 0.677
validation baseline 2 SVM 0.74S
validation CNN self-designed 0.847
validation CNN pretrained 0.878
testing baseline 1 constant 0.676
testing baseline 2 SVM 0.759
testing CNN self-designed 0.874
testing CNN pretrained 0.901

anomaly precision anomaly recall anomaly F1-score

0.598 0.514 0.553
0.724 0.553 0.627
0.813 0.794 0.801
0.851 0.843 0.955
0.598 0.512 0.552
0.752 0.556 0.646
0.847 0.826 0.836
0.902 0.836 0.868

(a) Self-designed CNN model

Pretrained CNN model
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Figure 3. (a) The performance of the applied CNN model within 30 epochs of training on the validation data set. (b) The ROC curves of every

single anomaly on the testing data set.

three parts. Specifically, both anomaly information and location
information outputs are processed using a sigmoid function to
standardize the values between 0 and 1 since the information is in a
binary case setting. Pattern information output is regulated through
the log-softmax function (log operation after the softmax function)
from the probability point of view. In the training process, the total
loss function is composed of anomaly loss, pattern loss, and location
loss together with three regularization coefficients (1, 0.1, and 0.1,
respectively) attached to each loss. Both anomaly loss and location
loss are calculated using the binary cross-entropy (BCE) loss function
which gives output at each element position range from 0 to 1. For a
predicted value larger than 0.5, it can be interpreted as true (detecting
specific anomaly or perimeters) in this element. Pattern loss is
obtained through the negative log-likelihood (NLL) loss function,
where the sum of the output is 1, and the position of the largest
element indicates the category of the infill pattern.**** Last but not
least, the three regularization coefficients are specifically designed to
balance the performance of the overall prediction while maintaining
the main objective of anomaly classification.

Evaluation Metrics. The performance of the model is evaluated
through the following aspects. First and foremost, the accuracy,
precision, recall, and Fl-score of the anomaly detection are analyzed.
In order to determine these values, four additional terms are defined.
For a single prediction, true positive (TP) and true negative (TN)
stand for the label and prediction both being equal to 1 or 0,
respectively; false positive (FP) and false negative (FN) describe an
opposite prediction on the label 0 and 1, respectively. These four
terms sum up the entire evaluation data set. Hence, the evaluation
terms can be expressed in the equations as follows:

TP + TN
TP + TN + FP + EN

Accuracy =

(1)

TP TP
Precision = ————, Recall = ——
TP + FP TP + FN (2)
2-Precision-Recall
Fl-score = ——M———
Precision + Recall (3)

Besides the evaluation of anomalies, accuracy is also calculated on
pattern and location predictions. Since pattern and location
information are not the major concern in the anomaly detection
problem, the analysis in the next Results and Discussion section
focuses on the performance of the anomaly classification task.

3. RESULTS AND DISCUSSION

Performance of the Classification Models on Overall
Anomaly Cases. The results of the applied models in both
validation and testing data sets are summarized and presented
in Table 1. In addition, Figure 3(a) shows the performance of
the CNN models on the validation data set against the number
of training epochs. Note, the evaluation metrics shown in the
table and figure are the average value of the three anomaly
cases. By viewing the accuracy and Fl-score of the anomaly
prediction, both CNN models perform better than the baseline
models in both validation and testing data sets. Here, the F1-
score is the operation of precision and recall, which indicates
the robustness of a model on the prediction of both true and
false labels. The results further demonstrate the necessity and
feasibility of applying CNN methods to this problem. In terms
of the two CNN models, the performance of the self-designed
four-layer CNN architecture is competitive against the
pretrained one. It implies that this four-layer CNN network
is comparably sufficient to extract the anomaly features hidden
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Table 2. Performance Summary of the Predictions of a Single Anomaly on the Testing Data Set

method anomaly category  anomaly accuracy  anomaly precision
self-designed anomaly 1 0.878 0.680
self-designed anomaly 2 0.861 0.814
self-designed anomaly 3 0.884 0.924
pretrained anomaly 1 0.915 0.836
pretrained anomaly 2 0.872 0.858
pretrained anomaly 3 0.915 0.948

anomaly recall  anomaly Fl-score  pattern accuracy  location accuracy

0.680 0.680 0.969 0.913
0.817 0.816
0.878 0.901
0.694 0.758 0.974 0.922
0.793 0.824
0.908 0.928

Table 3. Performance Summary of the Predictions of Different Infill Patterns on the Testing Data Set

method infill pattern anomaly accuracy  anomaly precision
self-designed grid 0.872 0.801
self-designed honeycomb 0.852 0.861
self-designed rectilinear 0.915 0.813
self-designed gyroid 0.858 0.873
pretrained grid 0.865 0.800
pretrained honeycomb 0.896 0.920
pretrained rectilinear 0.939 0.888
pretrained gyroid 0.905 0.943

anomaly recall ~ anomaly Fl-score  pattern accuracy  location accuracy

0.699 0.747 0.969 0.906
0.890 0.875 0.958 0.885
0.863 0.837 0.984 0.917
0.799 0.835 0.964 0.943
0.667 0.727 0.969 0.906
0.899 0.909 0.964 0911
0.870 0.879 0.990 0.927
0.838 0.888 0.974 0.943

behind the images. Moreover, the pretrained CNN network
achieves the best performance among the four models. On the
one hand, the pretrained feature extractor can be a general and
helpful tool even if there are huge distinctions between our
data set and ImageNet. On the other hand, a deeper network
shows a better result for our problem. However, the elevation
on the performance slows down and reaches a limit with an
increased number of layers. One additional remark we would
like to add is the choice of model output size and loss function.
In the first place, we only predict the anomaly information, and
hence, the output size of the model only has three elements.
The performance of the pretrained model on the anomaly
detection task only reaches an overall accuracy of 0.82 and F1-
score of 0.80. This is an interesting finding as the additional
pattern and location labels are informative and help regularize
the detection of anomalies. Moreover, it also implies that the
features between the interior and exterior of the bioprinted
part are distinct to each other and their quality assessment can
be treated differently to improve model accuracy. Additionally,
more complicated printing patterns such as vascularized tissue
constructs can be evaluated through the extracted small image
patches.

Performance of the Classification Models on Single
Anomaly Cases. Besides the evaluation of the overall
performance of the anomaly prediction, analysis is focused
on the performance of every single anomaly. The receiver
operating characteristic (ROC) curve is performed on the
testing data set of every single anomaly. The ROC curve is the
plot of the true positive rate (recall) against the false positive
rate (FN over the sum of FN and TP), and the area under the
curve (AUC) illustrates the capability of a binary classifier
model. The AUC value of a perfect classifier is 1.0, and the
AUC value of a random classifier is 0.5. Figure 3(b) shows the
ROC curves of three individual anomalies for both CNN
models. The AUC values achieve around 0.95 for all the cases
and indicate a satisfying performance of the classifier. In
addition, a detailed summary of the evaluation metrics on each
anomaly as well as pattern and location information
predictions are shown in Table 2. Here, anomalies 1, 2, and
3 stand for discontinuity, irregularity, and nonuniformity
anomalies, respectively, for both Figure 3(b) and Table 2.

For anomaly detection orientated applications, both
accuracy and recall are key factors of the performance of the
model. The former parameter shows the overall correctness of
the entire data set, while the latter one reflects the accuracy
among the images having anomalies (true labels). For the three
anomalies, while discontinuity is believed to be one of the most
obvious defects based on human visual inspection, it has the
lowest recall value among all three anomalies. The inferior
performance on discontinuity is believed to be caused by the
small and isolated feature of the anomaly. Unlike the other two
anomalies which have a raster or several rasters of defects, the
feature of discontinuity is subtle and regional where the
characteristic information is likely to be lost in the calculation
and propagation of the machine learning model. It can be seen
that the predictions on the irregularity anomaly perform
moderately in recall value and worst in accuracy. As the feature
of this anomaly involves thin or thick rasters (from the top
view), it poses many difficulties during the labeling process for
an experienced user. Moreover, the distinction between the
infill raster tying parallel together with the perimeter and
irregularity anomaly requires prior design information on the
print. Last but not least, nonuniformity is thought to be the
hardest anomaly to classify, as the unsmooth surface is difficult
to detect from the top view. However, the results for the
nonuniformity anomaly detection are the best in terms of all
the evaluation metrics (accuracy, precision, recall, and F1-
score) among all three anomalies.

Performance of the Classification Models on Differ-
ent Infill Patterns. After analyzing the performance on single
anomaly cases, viewing the prediction results with respect to
different infill patterns is also another important point of view.
A detailed summary of the performance of the testing data set
is shown in Table 3. Based on the result of the Fl-score, we
can conclude that the honeycomb infill pattern achieves the
best performance on anomaly classification, and the rectilinear
pattern obtains superior results on pattern recognition. The
gyroid pattern shows the highest accuracy on location
information prediction. Although the honeycomb infill pattern
is believed to be the most complicated case based on its
features and winding printing path, the performance shows an
opposite result compared to our initial thoughts. This may
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Figure 4. Anomaly prediction result visualization on sample images of the testing data set. Ground truth images are marked in blue, and prediction
images are presented using green (all anomalies are detected), yellow (partial anomalies are correctly detected), and red (all anomalies are not

detected or wrongly predicted) colors for bounding boxes and labels.

imply that the complex feature of the honeycomb infill pattern
has a diverse contrast against the other three infill patterns, and
hence, it is easier for the machine learning model to learn the
distinct information behind this unique pattern.

Results Visualization and Discussion on Optimizing
Printing Parameters. To better present the prediction on
anomalies in different infill patterns, prediction results are
visualized using different colors on the sample images of the
testing data set (Figure 4). In Figure 4, discontinuity is
correctly predicted in the honeycomb pattern (the last
column), while it failed in the rectilinear one (the second
last column). The feature extractor may fail if the anomaly
(breaking position in this case) is near the edge of the image.
In terms of irregularity anomalies, based on Figure 4, thin
irregularity anomalies in both grid and rectilinear patterns are
not predicted correctly (shown in red bounding boxes).
However, thick irregularity anomalies in rectilinear patterns are
all correctly predicted. This may be caused by the imbalanced
training data set as a thicker irregularity is more common
(more images in the collected data set) due to the suboptimal
printing temperature settings. Lastly, for the nonuniformity
anomaly, it only fails for one image of the gyroid pattern and
succeeds with all other predictions. It is believed that both the
unsmooth stripe features and reflection of the surface light help
with the recognition of the nonuniformity anomaly.

As mentioned in the Experimental Setup and Image Data
Preparation section, the occurrence of anomalies is highly
related to the setting of printing parameters including extrusion
pressure, printing speed, printhead temperature, printing bed
temperature, and humidity of the environment. A higher
extrusion pressure results in extruding too much material in a
unit time and could lead to irregularity anomaly. The choices
of printing speed and printhead temperature are related to the
rheological property of the printing material, where improper
settings such as an increased printing speed could cause
discontinuity or a higher printhead temperature will decrease
the viscosity of the hydrogels and give rise to an irregularity

anomaly. Hence, systematic optimization methods such as
design of experiments (DOE) can be applied in future studies
to find the best combinations of the printing parameters.
Moreover, as the quality of the prints is usually correlated with
multiple printing parameters, machine learning methods
including principal component analysis (PCA) can be used
to determine the dominant printing parameters. The bioprinter
has a quick response to the change of printing speed, while a
longer latency time to the modification of temperature.
Standard patterns such as multiple lines of raster or continuous
spiral circle can be printed using an increasing printing speed
under different sets of printhead and print bed temperature.
Based on the features of the print, an optimal set of printing
parameters can be preliminarily determined. Due to the
complex geometry of the prints, further adjustments on
preflow and postflow time may be needed for better printing
quality. Additionally, the radius of curvature (ROC) of the
geometry can also affect the occurrence of anomalies. For
example, decreasing the printing speed at sharp corners can
effectively avoid discontinuity. Quantitative analysis can be
further conducted to find the relationship between proper
printing parameters against geometrical features (e.g,, ROC) in
both 2D and 3D configurations. The results are believed to be
helpful for fine-tuning the process parameters when printing
with complex geometries. In this study, a good-quality first-
layer process parameter setting is shown in Table 4. Moreover,
an environment with elevated humidity would generate
moisture at the surface of the printing plate and easily induce
nonuniformity anomaly. Hence, a constant dry environment

Table 4. Set of Printing Parameters That Can Print a Good-
Quality First Layer in the Experiments

printing nozzle extrusion  printing print bed preflow
parameters  diameter pressure speed temperature time
value 0.2 mm 12 kPa S mm/s 13 °C 350 ms
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within the bioprinter is essential to achieve a stable printing
process.

4. CONCLUSIONS

In summary, the established anomaly system and developed
machine learning method are able to successfully detect and
recognize the type of different anomalies in a layer-by-layer
configuration for bioprinted materials. The best CNN model
reaches an overall accuracy of 0.901 and Fl-score of 0.955 on
the testing and validation data sets, respectively. Among all
three anomalies, nonuniformity detection reaches the best
performance, while discontinuity performs the worst. It is
believed that the results can be further improved by improving
the balance of different anomalies within the data set and fixing
the environment’s conditions (e.g, lighting) during the data
collection. It is hypothesized that dyeing the material with
colors can be helpful for this problem. However, mixing the
extra additive (food coloring) could potentially change the
printability of the material and requires further tuning of the
printing parameters. Additionally, transfer learning can also be
applied to this problem in the future to minimize the manual
labeling process and enhance its general application capability.
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