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Generative machine learning algorithm for lattice
structures with superior mechanical properties†

Sangryun Lee, Zhizhou Zhang and Grace X. Gu *

Lattice structures are typically made up of a crisscross pattern of beam

elements, allowing engineers to distribute material in a more structurally

effective way. However, a main challenge in the design of lattice

structures is a trade-off between the density and mechanical properties.

Current studies have often assumed the cross-sectional area of the

beam elements to be uniform for reducing the design complexity. This

simplified approach limits the possibility of finding superior designs with

optimized weight-to-performance ratios. Here, the optimized shape of

the beam elements is investigated using a deep learning approach with

high-order Bézier curves to explore the augmented design space. This is

then combined with a hybrid neural network and genetic optimization

(NN–GO) adaptive method for the generation of superior lattice struc-

tures. In our optimized design, the distribution of material is smartly

shifted more towards the joint region, the weakest location of lattice

structures, to achieve the highest modulus and strength. This design

strikes to balance between two modes of deformation: axial and

bending. Thus, the optimized design is efficient for load bearing and

energy absorption. To validate our simulations, the optimized design is

then fabricated by additive manufacturing and its mechanical properties

are evaluated through compression testing. A good correlation between

experiments and simulations is observed and the optimized design has

outperformed benchmark ones in terms of modulus and strength. We

show that the extra design flexibility from high-order Bézier curves

allows for a smoother transition between the beam elements which

reduces the overall stress concentration profile.

Introduction

Designing lightweight and strong materials has been a long-
sought goal in mechanical and materials engineering for
decades. Many previous works have tried to develop new
materials by introducing physical or chemical bonds between
two different materials such as composites and alloys, or

tuning microstructures of single materials.1–6 The lattice struc-
ture, especially, inspired by the unit cell of crystalline materials
in nature, is one of the most lightweight structures compared to
conventional engineering materials.7,8 With the recent devel-
opment of precise additive manufacturing processes, much
work has been devoted to understanding the relationship
between microstructure and mechanical properties.9–15 Speci-
fically, microstructures typically need to be tuned depending on
the type of the lattice being optimized, such as octet-truss,
body-centered, face-centered, diamond or other complicated
structures.

One of the inherent limitations of the lattice structure is the
reduction of its mechanical properties compared to its base
material due to the high void fraction.16 If the lattice structure
is viewed as a composite with base material and void phases,
the theoretical limit of the modulus (Eth) is calculated by using
the Voigt limit,17 expressed as Eth ¼ �rE0 where E0 is the
modulus of the base material and �r is the relative density of
the lattice structure. Since the lattice structure typically has at
least cubic symmetry, it is difficult to achieve the upper bound
of the modulus where the architecture is highly anisotropic. In
order to improve mechanical properties at a fixed density, many
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New concepts
In this work, we propose a novel hybrid neural network and genetic
optimization (NN–GO) adaptive method to expand the design space of
lattice structures with the aim of further improving their mechanical
properties. A key element of our NN–GO method is the utilization of
Bézier curves to systematically generate designs where the beam element
profile is taken as a design variable. The combination of neural networks
for fast inference and genetic optimization for design generation leads to
the creation of never-before-seen lattice structures that can be tailored to
desired properties. The duality of the proposed method also allows for a
feedback loop whereby designs generated by the genetic optimization can
be used as new training samples to the neural network, where a new
batch of optimized designs can be generated. Moreover, additive
manufacturing and compression experiments are conducted to validate
the proposed method. This adaptive framework is envisioned to be
applicable for the design of lightweight materials with desired properties.
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previous works have designed stiff lattice architectures inspired
by various lattice structures seen in nature.18–20 However,
despite intensive research activities, the shape of the beam
element in the lattice structure is not typically considered as a
design variable to further improve the mechanical properties.
The challenge in exploring variable cross-sections of beam
elements arises from the expanded design space that is orders
of magnitude larger all while having to formulate relative
density constraints for unbiased comparisons.

Consequently, simple geometries parameterized by a few
variables have been developed for modeling the beam element.
For example, studies have suggested a tapered beam or graded
beam element described by two design variables for body-
centered (BC) lattice structures.21,22 In these works, the BC
lattice structure with a modified beam element has a noticeable
improvement in elastic stiffness and strength compared to a
cylindrical element case. However, a small number of geo-
metric parameters have been used for modeling because it is
difficult to work with a large number of design variables when it
comes to design and optimization methods. Recently, machine
learning algorithms have shown exceptional performance in
learning complicated relationships between high-dimensional
inputs and outputs. Specifically, by leveraging the fast predic-
tion of neural networks (NNs), previous works designing the
optimized microstructure or shape for various engineering
structures, such as composites, adhesive pillars, and
metamaterials23–27 need only consider a few initial designs
out of an infinitely large design space.

In this study, we utilize a machine learning-based optimiza-
tion approach to design the beam elements of lattice structures
using Bézier curves, which is a concept originally used in the
computer graphics field. Here, we adopt a BC lattice structure
as our target to compare with previous work in the area of
research. The shape of the beam elements is modeled by a
high-order Bézier curve rather than a couple of critical radii to
cover a more flexible design space. What is unique about Bézier
curves is not just an opened up flexible design space but also it
guarantees smooth surfaces in the domain. Smooth surfaces
are especially important when it comes to manufacturing,
ensuring that all the structures generated from our approach
will be realizable for future practical applications. The relative
density and modulus of the lattice structure are predicted
through finite element analysis (FEA) and homogenization;
initial data are obtained by using randomly generated Bézier
curve control points. Then, two deep NNs are trained to predict
the relative density and relative Young’s modulus using the
shape of the Bézier curve as an input. We then generate new
beam element shapes by applying a hybrid NN and genetic
optimization (GO) adaptive method for the creation of novel
material structures. The optimized design is compared with
two state-of-the-art models: (1) cylindrical beam that has one
geometric parameter, radius, and (2) graded-density beam,22

which is parameterized by two variables, the radii of the cross-
section at the midpoint and ends of the beam element. The
benefit of using a combined NN–GO approach compared to a
simple GO method in accelerating the design approach is also

discussed. Finally, we fabricate our optimized BC structure
using additive manufacturing, and validate our optimized
design with compression experiments.

Generative machine learning algorithm
for shape optimization

The Bézier curve is adopted for modeling smooth beam ele-
ments in order to obtain lattice structures that can be accu-
rately fabricated by additive manufacturing. A total of 20 000
different Bézier curves are obtained for initial datasets, and the
elastic modulus and relative density of the BC truss are pre-
dicted using the method described in Fig. 1 and Computational
methods section (ESI†). After preparing 20 000 initial datasets,
we train two NNs considering the control points of the Bézier
curve as input and the relative density or relative modulus as
output. Fully connected networks including ten (relative den-
sity NN) and twelve (relative modulus NN) hidden layers are
used, and the number of neurons in all hidden layers is the
same as the input dimension. Batch normalization and ResNet
architecture are employed to prevent gradient vanishing or
boosting that may arise when training a deep neural
network,28 and leaky ReLu function with a linear slope of 0.1
is used as the activation function. The detailed architecture of
the neural networks is depicted in Fig. S1 (ESI†). Here, details
of the hyperparameters are discussed. The initial datasets are
divided into a training and test set with a ratio of 9 : 1. The
batch size is set to 1000 for the NN used to predict for relative
density and 500 for the NN used to predict for relative modulus.
The NNs are trained to minimize the root mean square error
(RMSE) by using the adaptive moment estimation (ADAM)
optimizer29 for 150 epochs. The initial learning rate is 0.01,
and it is multiplied by 0.1 every 50 epochs. To verify the
structures of our NN and the hyperparameters, the RMSE of
the test set is calculated at every epoch.

Then, new Bézier curves are generated using GO and greedy
decisions. The penalty function is employed to establish our
objective function in order to find the optimized structure
satisfying relative density constraints. The objective function
(F) used in our study is

F �r; �Eð Þ ¼ k �r� �r0j j þ �E (1)

where �r and %E refer to relative density and modulus, respec-
tively, and k represents the penalty coefficient. When the
objective function is maximized using a negative penalty coeffi-
cient, the converged structure has maximized modulus with the
relative density of �r0. When the term �r � �r0j j is too small, the
objective function does not have the maximum value at �r0. In
this study, we use �5 as the penalty coefficient so that the
objective function has a maximum at �r0 for the entire range of
relative density (Fig. S2, ESI†). We also predict minimum
Young’s modulus of BC lattice structure by using a positive
penalty coefficient. That is, the objective function is maximized
when k = �5, or minimized when k = 5, obtaining the optimized
lattice structure with maximum or minimum Young’s modulus,
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respectively. Using the relative density and modulus obtained from
FEA, the outputs of all data are calculated through the objective
function. In order to select the parent sets for applying to GO, the
ranking is determined based on the output of the objective function;
the top or bottom 5000 datasets are then selected as parent sets
used for GO to maximize or minimize Young’s modulus, respec-
tively. For the GO, we consider the input data as a chromosome and
each gene is the x or y coordinate of the control points, i.e., each
chromosome contains 60 genes. After picking two different datasets
from the parent sets, a new Bézier curve is obtained through a
crossover product using a randomly selected division point, and
random noise is applied to the parent set for mutation.

In our design approach, the objective function value of the
offspring data is predicted from the two NNs, and it is accepted
as a new dataset if the output is higher than the top 1% (when
maximizing modulus) or lower than the bottom 1% (when
minimizing modulus) of the total data. Since the NN provides
fast predictions, greedy decisions can be made to select off-
spring with high outputs in terms of the objective function
value. In order to prevent trapping into local minima during

optimization, 500 random samples are generated at every
generation and included in the new data set. When the number
of newly created Bézier curves through GO reaches 1000, the
ground truths of all new data are obtained through FEA and the
homogenization method. Then, active learning is employed to
increase the prediction accuracy of the NNs (Fig. 1d and Fig. S3,
ESI†). The benefits of incorporating active learning in combi-
nation with NNs are to improve the prediction accuracy and
decrease the extrapolation error. The NNs are updated by
training with all datasets including new datasets generated by
GO to expand the reliable prediction domain of NNs. After
updating the NN, the top 5000 points are selected out of the
total dataset (including all previous data) as parent sets and GO
is then conducted. The optimized BC structures are obtained by
this active learning-based optimization approach until conver-
gence. We also conduct optimization using simple GO without
NN-based acceleration to compare the design performance with
our active learning-based optimization, and the same para-
meters are used for the calculation; a comparison of the
methods is discussed in the next section along with the results.

Fig. 1 (a) The 30th-order Bézier curve with control points where a is the lattice constant. The control points are described as red markers. (b) The unit
cell of BC structure obtained using Bézier curve in (a). (c) The relative modulus – relative density plot of initial datasets. The initial datasets are obtained
from randomly generated control points sets and the relative density has uniform distribution. (d) Workflow chart of our NN–GO design approach. The
shape of the beam elements in the BC lattice structure is described by the Bézier curve with control points, and then the relative density and Young’s
modulus of the lattice structure are predicted from the FEA and homogenization method. Two different NNs are trained to predict the density and
modulus using the control points as input. Then, applying GO combined with the NNs, new beam shapes having high stiffness are derived as offspring.
The NNs are updated by augmenting the new datasets generated by GO to improve the prediction accuracy, and the optimized beam shape is obtained
by iterating the feedback process (active learning) between NN training and GO until convergence.
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Results and discussion

During the training process of the two NNs, both the RMSEs of the
training and test data sets decrease with increasing epoch and the
RMSEs converge to a value lower than 10% of their initial values
(Fig. 2). To verify the prediction accuracy of the trained NNs, The R2

value is calculated by comparing the NN predictions against FEA
results. The R2 is calculated by fitting the data onto the y = x curve,
and it represents the accuracy of the NN prediction. The R2 of the
test set of both the relative density and modulus is higher than 99%,
which implies high prediction accuracy (Fig. 2). We also calculate R2

at every generation during optimization, and all of them are close to
a value of 1 (Fig. S4, ESI†). Because of the high accuracy of the NN
models, the properties can be predicted without using expensive
FEA calculations, which are roughly 50 times slower than the NNs.
Moreover, FEA requires a large computational cost when the relative
density is high because many elements are used for structures with
more volume. However, since the prediction of the NNs is based on
an algebraic calculation using control points as an input, the
computation time does not depend on the relative density. Hence,
if the NNs are employed as surrogate models when applying GO, we
are able to quickly predict the output of the offspring data, which
makes possible the use of greedy offspring selection.

In order to compare our optimized beam shape with the
other models suggested by previous work,22 the relative density
of the BC lattice structure is fixed at the �r0 ¼ 0:1734 used in
previous designs. As the generation of GO increases, the output
of the objective function increases, and the datasets converge to
the vertex of �r ¼ �r0 and %E = %Emax. In particular, the minimum
value of the last generation has a higher value than the
maximum of the initial data (Fig. 3a). In other words, we are

able to generate data having a higher value than the initial data
by using active learning-based optimization. When optimiza-
tion is performed by using simple GO, it has a lower modulus
compared to our NN–GO design approach at every generation.
For example, the maximum stiffness of the 8th simple GO
generation is lower than that of the first generation of our
design approach (Fig. 3b). Although active learning-based
design requires computation time for training NNs, our
proposed method is much faster than simple GO due to the
greedy decision. Moreover, simple GO requires more genera-
tions to obtain a comparable output, which results in increased
computation time compared to the active learning-based
design method. In particular, since the FEA analysis for one
simulation takes a long time, the simple GO would take about
ten times longer than our design method to obtain comparable
output (Fig. S5, ESI†).

We compare the optimized design with two state-of-the-art
models, the cylindrical beam (CL) and graded-density beam
(GR).22,30–32 In order to investigate the effect of the beam shape
on the mechanical properties of the lattice, the same material
for all designs are used for simulation. The relative modulus of
our optimized design is 0.0122, which is 21% and 77% higher
than that of the GR and CL models, respectively. Our optimized
shape has a larger radius variation compared to the GR model

and is almost symmetrical at x ¼
ffiffiffi
3
p

a
�
4 (Fig. 3c). One of the

possible causes of the symmetric shape is the crystallographic
symmetry of the BC structure. In fact, the [111] and [%1%1%1] of BC
lattice are in the same family of directions, and the only way to
satisfy the crystallographic symmetry for fully periodic lattice
structure is having symmetric beam geometry. We also design

Fig. 2 The RMSE-epoch plot of NN that is used to predict (a) relative density and (d) relative modulus. Relative density of (b) training set and (c) test set
predicted from NN with respect to FEA results. The relative Young’s modulus of (e) training set and (f) test set predicted from NN compared to FEA results.
The black dashed line in (b), (c), (e) and (f) is y = x.
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an optimized shape using the symmetric 30th-order Bézier
curve to validate our result, finding a negligible difference
between the two cases (Fig. S6, ESI†).

The normalized effective stress fields of beam elements for
the three structures are depicted in Fig. 3d and e. It can be
noted that for any BC lattice structure there will a stress
concentration near the joint region, the central part of the unit
cell where the beam elements intersect, due to bending stress.
For the CL model, the stress concentration near the joint area is
higher than the GR and Our model because it does not have
much bending rigidity due to its uniform cross-sectional area.
Similar to the CL model, the GR model also experiences high
localized stress concentration at the joint region where it has a
relatively small cross-sectional area. On the other hand, Our
model has a larger radius variation and more distributed stress

field in comparison to the other models. The distribution of the
material for Our model is smartly shifted more towards the
joint region, which is the weakest location of the lattice
structure. The architecture of Our model strikes to balance
between two modes of deformation: axial and bending. Because
it is able to balance between these two deformation modes, Our
model has higher mechanical properties and is more efficient
for load bearing and energy absorption.

In order to validate our machine learning-based optimized
design, the compressive Young’s moduli of the three lattice
structures are measured using additive manufacturing and
experiments. Stereolithography (SLA) is used to fabricate the
three BC lattice structures (Fig. 4a and b); (1) our optimized
design (Our model), (2) graded-density beam lattice structure
(GR model),22 and (3) simple BC lattice structure consisting of

Fig. 3 (a) Scatter plot of objective function outputs at different generations as a function of relative density. (b) The relative Young’s modulus as a
function of the generation of GO for comparing NN–GO and base GO approaches. (c) Geometrical parameters for Our model, GR model, and CL model;
lengths are normalized by the lattice constant, a. (d) Normalized von Mises stress along the line on the beam surface and the arc length is the distance
from the joint. The arrows indicate maximum stress of each beam element. (e) Stress plot within unit cells of the three BC structures. The E0 is the Young’s
modulus of base material and e0 is the applied uniaxial strain.
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the cylindrical beams (CL model). The Form 3 SLA printer
developed by Formlabs is utilized and white standard resin is
used for the fabrication. The lattice structures are additively
fabricated by selectively curing the polymer resin layer-by-layer
using an ultraviolet laser beam. The thickness of each layer is
50 mm and the liquid resin is solidified through the process. In
order to fabricate accurate specimens, the lattice constant for
the specimens is 1.5 cm which is much larger than the mini-
mum feature size that can be fabricated by the 3D-printer, and
a total of 27 unit cells (3 � 3 � 3) are used for the lattice
structures. Using this fabrication method, we could fabricate
the specimens without printing support structure inside the
lattice structure except for the bottom side of the lattice. Since
3D-printing in general is a layer-by-layer additive approach to
fabrication, the material waste is oftentimes reduced compared
to a subtractive approach. The 3D-printing costs here depend
mainly on the amount of material used for fabrication driven by
the volume of the lattice structure. To this end, since the
relative density of the three models is fixed, the same amount
of resin is used. We conduct uniaxial compression testing using
displacement control with a loading speed of 2 mm min�1

resulting in about 7.5 � 10�4 s�1 of strain rate. Three

specimens are tested for each case (Our model, GR model,
and CL model) to estimate the repeatability of our experiments,
and the moduli are measured by using the slope of the linear
portion of the curve within 1–2% of strain. Uniaxial compres-
sion testing is conducted to obtain the stiffness and strength of
the lattice structures, and the stress–strain curves measured
from our experiments are shown in Fig. 4c. The Young’s moduli
obtained from the experiments show good agreement with our
simulation results as depicted in Fig. 4d. The GR model has
higher stiffness than the CL model and our optimized design
has modulus values 23% and 58% higher than that of the GR
and CL models, respectively.

The strength of the lattice structures is measured using peak
stress in the stress–strain curve obtained from experimental
testing. It can be shown in Fig. 4e that the optimized design has
17% and 105% higher strength than the GR and CL models,
respectively (Fig. 4e). The maximum normalized von Mises
stress of our optimized design is lower than that of the other
structures under the same applied loading, which is believed to
be one of the reasons that Our model has high strength
properties. Because our designs are generated based on high
order Bézier curves, the extra design flexibility allows for a

Fig. 4 (a) Schematic of SLA 3D-printing process. (b) Three different specimens (Our model, GR model, and CL model) printed by SLA. The black line at
the right bottom represents a scale bar of 1.5 cm. (c) Stress–strain curves of the three lattice structures. (d) Relative Young’s moduli and (e) strength of the
three BC structures. (f) Three lattice structures after fracture. One fracture type is observed at the joint in GR and CL model, and Our model shows an
additional type which occurs at the small cross-section of beam element (white arrows in the figure).
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smoother transition between the beam elements which reduces
the overall stress concentration profile. In our experimental
results, all of the fractures occur on the {111} plane where
maximum shear stress is applied when the loading is applied in
[100] direction for BC structure as shown in Fig. 4f. The fracture
behavior of the lattice structures depends on the stress field
within the beam elements. The two state-of-the-art models
show one type of fracture at the joint because they have a
highly concentrated stress field near the joint. On the other
hand, in the optimized design, two types of fracture are
observed because the stress near the joint is comparable to
the stress at the smallest cross-section. Because the mechanism
of increasing mechanical property is the same for both elastic
modulus and strength, the optimized structure has the highest
strength when optimizing elastic modulus under fixed lattice
structure and density. Currently, our problem is trained on a
linear elastic system with only the structure as input since any
change in the material properties linearly scales the perfor-
mance of any structure. It is of note that if instead we are
working with a nonlinear system with large deformation or
buckling occurring, optimized designs are expected to be

different. These mechanisms can be taken into account if our
machine learning model is modified to take as input not only
structure but also base material properties, which would be an
interesting future work.

To predict the lower bound of the relative Young’s modulus
of the BC structure, we minimize the objective function using k
= 5 and �r0 ¼ 0:8. The modulus decreases as the generation
increases and it converges to a small relative modulus (Fig. 5a).
One of the noticeable geometric changes in the lattice structure
is that the cross-section area near the vertices of the unit cell
gradually decreases, and more stress is concentrated near the
vertex as the optimization progresses (Fig. 5b). The cross-
section of the final optimized structure is very small, and the
modulus is very low due to the highly concentrated stress field.
In fact, the minimum radius of the Bézier curve is set to 0.01a
when creating the Bézier curve and thus the optimized struc-
ture has a finite section at the vertex. With no minimum radius
constraint, the optimized design has an infinitesimally small
cross-section at the vertex. Due to the small cross-section, the
stress singularity rises at the vertices of the unit cell and the
theoretical lower bound of modulus converges to zero because

Fig. 5 Optimization results for minimizing stiffness of lattice structure with relative density of 0.8. (a) Relative Young’s modulus with respect to
generation of GO. (b) The von Mises stress plot at different generations. As optimization progresses, the area of sliced surface at the vertices of unit cell
decreases resulting in high stress concentration. (c) Maximum relative Young’s modulus of the lattice structure for relative density. As the theoretical
lower bound is zero for the entire range of relative density, the red shaded area represents the relative modulus that BC lattice structures can have. (d) The
von Mises stress of BC structure at two different relative densities. (e) Bézier curves for optimized beam elements. The curve has one local minimum at
�r ¼ 0:2 and there are three local minima at �r ¼ 0:7.
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infinite stress is applied even under small loading. Hence, the
theoretical lower bound of the relative modulus of the BC
structure is zero regardless of the relative density.

We design the optimized beam shape of the BC structure for
different relative densities to estimate the upper bound of the
Young’s modulus. Here a symmetric 30th-order Bézier curve is
used for modeling the shape of the beam element and the same
design approach is applied. The maximized Young’s moduli are
much higher than that of the typical BC structure composed of
cylindrical beams for the entire range of relative density (0–1),
as shown in Fig. 5c. The Gibson–Ashby power law, commonly
used as an empirical model for describing the relationship
between modulus and density of lattice structures, is employed
to study the effects of relative density.33–36 The power law is
expressed as �E ¼ C�rn where C and n are coefficients depending
on the lattice types and our results are fitted to the expression
under fixed C = 1 to satisfy %E = 1 when �r = 1, i.e., only one fitting
parameter n is used. From our simulation results, the max-
imum Young’s modulus curve is obtained which is found to be
accurate in the entire range of the relative density. The coordi-
nates of all control points used for modeling the optimized
Bézier curves are described in ESI.† The optimized curve for low
relative density has a single undulation site at the middle of the
curve and the optimized shapes at high density have more local
minimum radii depicted in Fig. 5e. Since the stress is concen-
trated at the undulation sites, it results in a more distributed
stress field and high stiffness. Interestingly, as the density
increases, the topology of the structure is changed. When the
density is high, the optimized structure contains a hole in the
joint where the four beams intersect because lower stress is
applied to the joint compared to the interface of the upper and
lower beam elements (Fig. 5d). Hence, it is possible to obtain
optimized structures allowing topology change by using our
active learning-based design method. A generative design
method combined with NNs has the advantage of being able
to function without domain knowledge but requires a lot of
training data to analyze the relationships accurately. In other
words, if a small number of datasets are used for initial
training, many iterations would be required during the active
learning and optimization process. Therefore, in order to
optimize, for example, nonlinear systems with large deforma-
tion with reasonable computational costs for future works, it is
important to further understand the trade-off between the
number of datasets and optimization performance.

Conclusions

In this study, the optimized beam shape of the BC lattice
structure with maximum modulus and strength is designed
using an active deep learning-based optimization approach.
The optimized lattice structure and two other benchmark
designs are fabricated by additive manufacturing and their
mechanical properties are measured in experiments. We show
that our optimized design has higher stiffness and strength
than the benchmark ones and the fundamental mechanisms

are explained by the distributed stress field predicted from our
FEA. The lattice structures with the minimum modulus are also
generated using the same method. Thus, the upper and lower
bounds for the modulus over the entire range of relative density
are proposed. Active deep learning-based optimization holds
great promise in improving the mechanical properties of
complex lattice structures such as octet-truss, body-centered
cubic, or face-centered cubic structures composed of two or
more types of beam elements. To consider more types of beam
shapes, the lattice structures need to be optimized with more
input features. As an extension to this work, other mechanical
properties essential for structural stability design such as
fracture toughness, impact resistance, or buckling strength,
can be optimized by training NNs to learn the relationship
between the input features and the desired properties.
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