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A B S T R A C T   

Metamaterials are specially engineered materials distinguished by their unique properties not typically seen in 
naturally occurring materials. However, the challenge lies in achieving lightweight yet mechanically rigid ar-
chitectures, as these properties are sometimes conflicting. For example, buckling strength is a critical property 
that needs to be enhanced since buckling can cause catastrophic failure of the lightweight metamaterials. In this 
study, we introduce a generative machine learning based approach to determine the superior geometries of 
metamaterials to maximize their buckling strength without compromising their elastic modulus. Our results, 
driven by machine learning based design, remarkably enhanced buckling strength (over 90 %) compared to 
conventional metamaterial designs. The simulation results are validated by a series of experimental testing and 
the mechanism of the high buckling strength is elucidated by correlating stress field with the metamaterial 
geometry. Our results provide insights into the interplay between shape and buckling strength, unveiling 
promising avenues for designing efficient metamaterials in future applications.   

1. Introduction 

Metamaterials are engineered materials with unique properties not 
typically seen in nature [1–8]. These properties are achieved by tuning 
the geometric structures of the material, rather than by altering its 
chemical composition. As a result, it is possible to achieve a wide range 
of properties by exploring the vast design space of metamaterial ge-
ometries [9,10]. Metamaterials are known for their lightweight and 
exceptional properties suitable for applications such as protective armor 
[11,12], sensors [13,14], and morphing airfoils [15,16]. The use of 
additive manufacturing techniques also allows for the fabrication of 
complex geometries, further increasing their potential applications 
[17–22]. 

Moreover, the inherent challenge arises from the fact that meta-
materials typically incorporate voids and maintain a low relative density 
to achieve lightweight characteristics. However, this pursuit of reduced 
weight often comes at the expense of mechanical properties, rendering 
metamaterials more susceptible to unexpected buckling, particularly in 
their thin struts [23–25]. This buckling phenomenon can lead to a sig-
nificant reduction in energy absorption capabilities due to the rapid 

stress relaxation of the material [24]. Consequently, there is a growing 
body of literature in engineering metamaterials that exhibit enhanced 
resistance against buckling without significantly compromising their 
structural integrity. In addition, studies have been performed to exploit 
the post-buckling behavior of metamaterials to control the deformation 
modes of soft robotics or actuators [26,27]. For instance, Wang et al. has 
proposed soft machines driven by buckling actuators [28]. The buckling 
of soft material provides useful functions enabling actuators to deform 
through desired shapes. Therefore, programmable buckling behavior by 
tuning the metamaterials architecture can enable the design of meta-
materials that can be selectively buckled at specific loads, enabling so-
phisticated control over deformation modes. 

Achieving programmable buckling properties presents two chal-
lenges: determining the design variables critical for optimizing buckling 
strength and expanding design freedoms to allow for more versatile 
structural configurations. Studies have focused on the microstructure of 
metamaterials, incorporating the shape of the struts as a design variable 
for improving buckling strength [24,25,29,30]. However, only a few 
parameters have been considered due to the large computational cost for 
analyzing buckling behavior, which limits the design candidates for 
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optimization. Hence, the upper limit of buckling strength of meta-
materials and the mechanism of shape-dependent buckling behavior 
have yet to be fully studied. 

This study introduces a novel approach for optimizing the unit cell 
geometry of metamaterials to maximize their buckling strength without 
compromising their elastic modulus. The piecewise closed Bézier curve 
models a unit lattice of the metamaterials and allows a greater range of 
designs. Generative machine learning algorithm carries the optimization 
process and combines artificial neural networks and genetic optimiza-
tion [31,32]. The neural networks allow for fast prediction [33–38] and 
speed up the optimization process by making informed decisions during 
genetic optimization. Additive manufacturing and compression testing 
verify the optimal metamaterial design for enhanced buckling strength 
and controllable post-buckling behavior. The results of this study pro-
vide insights into the relationship between shape and buckling strength 
and demonstrate a promising method for designing efficient meta-
materials in the future. 

2. Methods 

2.1. Unit cell modeling and finite element analysis to predict buckling 
strength 

In order to generate training datasets covering a large design space, a 
parametric curve described by a number of design variables is needed. In 
this study, a piecewise closed Bézier curve with a highly flexible design 
space describes a unit cell shape of metamaterials. The length of the unit 
cell is 1 cm. A total of 7 cubic Bézier curves are connected to make a 
quarter of the unit cell shape. First, 8 random points are created in the 
first quadrant of the unit cell, including one point on the x-axis and y- 
axis, respectively (Fig. 1(a)). Then, the angle between the x-axis and the 
line connecting each control point to the origin is calculated. After ar-
ranging the angles in ascending order, a cubic Bézier curve is created 
between two adjacent points. Two other control points between the two 
points are determined through the C1 and C2 continuity conditions for 
the adjacent Bézier curves. The metamaterial having periodic micro-
structure is known to deform in the horizontal or out-of-plane direction 
as a post-buckling behavior. Therefore, this work adopts the symmetric 

unit cell shape to the x and y axes to reduce the number of independent 
design variables and find the optimal shape with a reduced computa-
tional cost (Fig. 1(b)). The geometry of the unit cell is obtained through 
the x-axis, y-axis, and origin symmetry of the quarter geometry. The 
design variable is the coordinate of the independent control points that 
determines the unit cell’s shape, i.e., 14 design parameters are used. 5 by 
5 unit cells are used for a plate with a thickness of 3 mm (Fig. 1(c)) to 
consider infinitely periodic metamaterials. Previous work has shown the 
effect of the number of unit cells on the buckling strength [24]. When 
the metamaterial has a larger unit cells than 5 by 5, the metamaterial has 
a converged buckling strength, and the post-buckling behavior shows an 
insignificant difference compared to the larger system. 

In this study, buckling analysis is performed using COMSOL multi-
physics with the assumption of linear elastic buckling [39]. The linear 
hexahedron element is used for the buckling simulation of meta-
materials. A rectangular mesh is generated on the frontal plane of the 
metamaterial, and then a sweep mesh is employed to construct the final 
three-dimensional mesh configuration. Approximately 56,000 elements 
are used for meshing the three-dimensional metamaterials. For bound-
ary conditions, the bottom surface is fixed, and the displacement of 1 
mm is applied to the top surface downward. Due to this boundary 
condition, the loadings applied on the top and bottom surfaces are 
symmetric, a feature that cannot be achieved using force boundary 
conditions. Therefore, the movement of the top surface is constrained 
horizontally to better align the computational condition with the 
experimental one. In our experiment, the top and bottom sides of the 
metamaterial are clamped by grips, inducing buckling as the top grips 
move in the vertical direction. Under this symmetric loading condition, 
we expect two buckling modes in our three-dimensional buckling sim-
ulations: (1) In-plane buckling and (2) Out-of-plane buckling. The 
buckling strength is calculated by multiplying the predicted eigenvalue 
by the average stress applied to the upper surface. By the assumption of 
linear elasticity, normalized Young’s modulus E0 = 1 (dimensionless) 
and a Poisson’s ratio of ν = 0.25, are used to generalize our results in-
dependent of material properties. 

Fig. 1. (a) Piecewise Bézier curve in the first quadrant of the unit cell. Each color corresponds to a cubic Bézier curve. (b) A closed Bézier curve encompassing the 
unit cell. (c) Metamaterial modeled by the closed Bézier curve. The geometric dimensions Lx and Ly are both set at 50 mm. The bottom surface is fixed while a 
prescribed displacement u is applied along the negative y direction to apply compressive loading. The thickness of the metamaterial is 3 mm. (d) The flowchart 
outlining the two design optimization approaches. (e) Normalized buckling strength derived from 20,000 initial datasets. The buckling strength is normalized by the 
Young’s modulus of the base material. The color represents the minimum thickness of the column along its axis. (f) Comparison of objective function values, as 
predicted by a trained neural network, with the results of finite element simulations. The R2 value is 97.5 %. 

S. Lee et al.                                                                                                                                                                                                                                       



Current Opinion in Solid State & Materials Science 31 (2024) 101161

3

2.2. Generative machine learning approach for design optimization 

This study employs an artificial neural network (NN) to comprehend 
the intricate relationship between geometry and buckling strength in 
metamaterials, aiming to accelerate design optimization. The meta-
material’s shape is optimized using a generative machine learning 
approach, generating 20,000 Bézier curves with corresponding buckling 
strengths predicted through finite element analysis (FEA). An objective 
function, incorporating the relative density, buckling strength, and 
target density, guides the optimization process. The NN, with 13 hidden 
layers and 14 neurons each, utilizes batch normalization and ResNet 
architecture. The NN is trained for 100 epochs, and the trained NNs are 
combined with genetic optimization (GO) to expedite the optimization 
process. The study introduces active learning to improve NN prediction 
accuracy, and the iteration of the algorithm converges to maximize 
buckling strength (Fig. 1(d)). The method proves more efficient than 
traditional GO due to the NN’s faster prediction capabilities. Details are 
described in the Supporting Information. 

2.3. Experimental setup 

A polyjet additive manufacturing technique (Objet260 Connex3, 
Stratasys®) is used to fabricate our metamaterials with complex geom-
etries. The fabrication process includes the utilization of an ultraviolet 
laser to cure the photopolymer layer-by-layer. The material called 
DM8530, which is a mixture of TangoBlackPlus and VeroWhite, was 
used as the base material for metamaterials [40]. The material DM8530 
exhibits a Young’s modulus of approximately 545 MPa, which is more 
than 180 times higher than that of pure TangoBlackPlus. This signifi-
cantly higher stiffness compared to pure TangoBlackPlus makes 
DM8530 suitable for linear buckling experiments, as it demonstrates 
negligible nonlinear behavior prior to yielding [41]. To mimic the 
loading conditions applied to the upper and lower surfaces, pure plates 
with a length of 3 cm are extended from both the top and bottom sur-
faces, subsequently secured by a mechanical gripper. The experiment 
controls the compressive displacement of the grippers. Under the quasi- 
static loading condition, the loading rate is fixed at 5 mm/min with a 
strain rate of 1.6 × 10− 3/s. Buckling strength was determined as the 

Fig. 2. (a) Normalized buckling strength of metamaterials during the optimization process. Each data point represents the maximum strength achieved within a 
given generation, with the 0th generation corresponding to the initial dataset. The filled mark implies out-of-plane post buckling behavior. (b)-(c) The unit cell shape 
of each metamaterial. The stress field ((d): σy, (f): σx) of the metamaterial under compressive loading in the y direction. (e) The first buckling mode shapes. 
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peak value along the achieved stress–strain curve. 

3. Results and discussion 

The initial datasets are prepared by generating random numbers for 
the coordinates of the control points. Fig. 1(e) shows the normalized 
buckling strength of our 20,000 initial datasets respect to their relative 
density. According to linear elasticity, the buckling strength is sensitive 
to the thickness of the column. Therefore, the minimum thickness of the 
column along its axis is calculated as the geometry feature of the met-
amaterial, and each mark in Fig. 1(e) is painted according to its mini-
mum thickness value. As shown in the figure, the buckling strength 
increases with the minimum thickness, as expected. Compared with the 
pure plate cases, all the initial datasets have lower buckling strength due 
to the voids embedded in the metamaterial unit cell. The NN is trained 
with the initial design of the unit cell as input and the objective function 
value as the output. The NN prediction accuracy is validated by 
comparing the NN prediction against FEA (ground truth). The R2 value is 
obtained by fitting our datasets into y = x curve and the R2 of the initial 
datasets is higher than 0.97, which implies high prediction accuracy 
(Fig. 1(f)). 

The generative machine learning-based optimization approach is 
performed for the metamaterials with three relative densities including 
25 %, 50 %, and 75 %. With a relative density of 25 %, the buckling 
strength increases as the optimization progresses, converging after the 
5th generation (Fig. 2(a)). Because the buckling strength of the best 
design among 7th-generation datasets is lower than that of the 6th-gen-
eration, the best design of the 6th-generation datasets is considered the 
optimized design in this study. For the comparison of the optimized 
structure (O-meta) buckling strength, the study chose three reference 
metamaterial models: rectangular (R-meta), circular (C-meta), and best 
of initial datasets (I-meta). Compared to the other shapes, the unit cell of 
C-meta has a thin vertical column, resulting in high compressive stress 
and therefore the lowest buckling strength (Fig. 2(b) and (c)). The R- 
meta has 506 % and 23 % higher buckling strength compared to the C- 
meta and I-meta, respectively, and the O-meta has 55 % higher buckling 
strength than the R-meta. Hence, the O-meta has 842 %, 55 %, and 90 % 
enhanced buckling strength than C-meta, R-meta and I-meta, 
respectively. 

The O-meta has a thicker column with a minimum thickness of 
around 1.5 mm compared to the reference models (1.3 mm, 0.2 mm, and 
1.2 mm for R-meta, C-meta, and I-meta, respectively), and therefore low 
compressive stress is applied to the column under the same applied 
loading condition, resulting in the highest buckling strength (Fig. 2(d)). 
Previous simulations from the literature have shown that an optimal 
column shape with radius variation in the vertical column has uniform 
strain energy in buckling mode [42,43]. However, the variation of our 
optimized shape is small, since the relative density of 25 % is not high 
enough to have a sufficiently thick column. The FEA simulation in Fig. 2 
(e) predicted the post-buckling patterns. In-plane buckling is observed in 
C-meta, R-meta, and I-meta, whereas out-of-plane buckling occurred in 
O-meta. Considering a pure plate subjected to a compressive load, it has 
two possible buckling modes: in-plane buckling mode and out-of-plane 
buckling mode. The buckling strength (σcr) and critical buckling load 
(Pcr) of the plate is determined by the Euler buckling theory, as shown in 
Equation (1): 

σcr =
Pcr

A
=

(
π
Le

)2

•
E
A
• (min(Ix, Iz) ), (1)  

where A is the cross-sectional area of the plate, I is the planar second 
moments of area, E is the Young’s modulus of the material and Le is the 
effective length considering the length factor raised by the boundary 
conditions. Given the microstructure, boundary conditions, and material 
properties, the first post-buckling mode is determined by a competition 
between Ix and Iz. That is, in the case of a rectangular plate with width b 

= Lx and thickness t, the buckling strength and corresponding post- 
buckling mode are determined through a comparison of Ix = (1/12)bt3 

and Iz = (1/12)tb3 values. When b≫t, out-of-plane is the first mode with 
a low eigenvalue for buckling, and in-plane buckling is the second 
buckling mode with higher buckling strength. However, in the case of a 
metamaterial with low relative density, various in-plane deformation 
modes have been observed due to the thin columns. Thus, in-plane 
buckling becomes the first mode, and out-of-plane mode becomes the 
second mode for the metamaterial with a low relative density. Since the 
pure plate has the maximum buckling strength of metamaterial, to in-
crease the buckling load of metamaterials at low relative density, the 
optimization proceeds to transition in the dominant buckling mode from 
in-plane to out-of-plane deformation. 

The transition of the buckling mode is observed in accordance with 
the O-meta during the optimization process (Fig. 2(a)). From the 4th 
generation, the metamaterials with the best performance in each gen-
eration show out-of-plane buckling. Each buckling mode is predicted by 
the eigenvalue problem and the eigenvalue is calculated through the 
FEA buckling analysis. The eigenvalue is the ratio of the buckling 
strength and applied stress, i.e., σcr/σapplied, also known as the buckling 
load factor. As studied in the previous literature, the eigenvalues of the 
first and second modes converge to each other when the column has an 
optimized shape (radius variation) [42,43]. In this work, the eigenvalue 
of 1st and 2nd buckling mode is calculated by FEA. The best design 
among initial datasets has 1st eigenvalue of 0.398 and 2nd eigenvalue of 
0.4528, showing the difference of 0.0546. The difference decreases as 
the optimization proceeds and eventually it is 0.0083 which means that 
the buckling strength of the two buckling modes become similar, as 
summarized in Supporting Information Table S1. 

A comparison of σx explains the two different buckling modes of the 
metamaterials with low relative density. Under uniaxial compression 
loading in a downward direction (− y), the I-meta and O-meta have a 
compressive stress σx near the joint part where the vertical and hori-
zontal beams intersect. When a compressive stress is applied to the 
lateral side of the column, buckling is prevented from occurring because 
the compressive stress suppresses the bending deformation, accompa-
nying high buckling strength. The O-meta, with a larger compressive 
stress zone area, therefore results in higher buckling strength compared 
to R-meta. In a summary of our simulation results, the O-meta has the 
highest buckling strength because it has a thick vertical beam and large 
negative stress zone, which effectively reduces the slenderness of the 
column, compared to the other reference models. 

Specimens are fabricated by 3D printing for the four cases to verify 
our optimization results, and three specimens are prepared for each case 
(Fig. 3(a)). The experiment uses a total of 12 specimens. As a result, the 
optimal shape has the highest buckling strength and stiffness showing a 
good agreement with the simulation results (Fig. 3(b) and (c)). The two 
deformation modes of the beam elements determine the stiffness. When 
their deformation predominantly involves stretching, the resultant 
stiffness is inherently higher compared to cases where bending domi-
nates due to the nature of a higher axial stiffness than bending stiffness 
[32]. The optimization increases the cross-sectional area of the vertical 
column to improve the buckling strength; the effective stiffness is also 
improved because more materials are shifted toward the loading di-
rection than in other cases. Furthermore, the optimized specimen 
showed an out-of-plane post-buckling mode whereas the rest showed in- 
plane buckling, which is also consistent with the post-buckling pattern 
predicted by the simulation (Fig. 3(d) and the compression testing video 
of four specimens shown in the Supporting Information as Video S1. 

We optimized the buckling strength of the metamaterial with a high 
density of 50 % and 75 % using the generative design optimization 
approach (Fig. 4(a)). The column of O-meta with a density of 50 % is 
thicker compared to the horizontal beam, which is consistent with the 
case of 25 % relative density. In addition, due to the sufficiently high 
density, it has a larger variation compared to the 25 % density, and the 
shape of the column is very similar to the optimal shape of the column 
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Fig. 3. (a) The fabricated specimens for compression testing. (b) Stress–strain curves of the four specimens (n = 3 samples for each microstructure). Stress values are 
normalized by the Young’s modulus of the base material, and the length of the error bar represents the difference between the maximum and minimum values of the 
three samples. (c) Normalized buckling strength of each specimen. (d) The captured deformation configuration observed in each sample subsequent to the initiation 
of buckling. 

Fig. 4. (a) Buckling strength with respect to different relative densities of the metamaterial. The shape of the unit cell corresponding to a relative density of (b) 50 % 
and (c) 75 %. The first buckling mode shape for the case of (d) 50 % and (e) 75 % relative density. 
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proposed in a previous study [44]. In particular, the relative density of 
75 % case has more waviness than 50 %, which has a more complex 
shape for more efficient stress distribution. Interestingly, the horizontal 
beam of all O-meta is very thin, and it is believed that the thickness of 
the beam does not significantly affect the buckling strength and post- 
buckling behavior. However, the thickness is essential for the high 
buckling strength due to the suppression of deformation in the lateral 
direction (Fig. 4(b) and (c)). Hence, the horizontal beam is essential to 
increase the buckling strength. But the beam does not need to be thick as 
it benefits from generating thicker columns while maintaining the thin 
thickness of the horizontal beam. 

Given the optimized microstructure, we further optimize the buck-
ling strength by modeling the shape of the unit cell as a rounded rect-
angle with its width w and height h consisting of elliptic corners having 
a, and b as semi-axis, respectively (Figure S2). We predict the buckling 
strength of the metamaterials with the same density in the range h0 – 1.7 
mm < h < h0 + 1.7 mm, and w0 − 1 mm < w < w0 + 1 mm, where w0 =

5.5 mm and h0 = 9.25 mm are approximated value from our optimized 
shape. Within these ranges, about 1000 different rounded rectangle unit 
cells are generated under a fixed relative density of 0.5, with the 
buckling strength compared with that of our optimized shape. As a 
result, the best-simplified metamaterial has a slightly higher normalized 
buckling strength (0.3979) compared to that of the optimal shape 
(0.3921); however, the improvement is insignificant, implying that O- 
meta is close to the optimum structure. One of the possible reasons why 
our generative design approach could not generate the rounded rect-
angle unit cell is because it is difficult to generate the round rectangle 
using our composite Bézier curves. The column of the unit cell consists of 
2 to 4 cubic Bézier curve and the smoothness of the column is very 
sensitive to the coordinate of the control point on the x-axis since it is 
quite difficult to obtain parabola shape using two jointed cubic curves. 
Therefore, in order to obtain the rounded rectangle model using our 
composite cubic Bézier curve, the control points in the Bézier curves of 
column part must be controlled very carefully. 

The relative strength-density results for the three geometries are 
plotted using the Gibson Ashby plot that is widely used for cellular 
structures, as shown in Fig. 4(a). O-meta has higher buckling strength 
than two typical unit cells for the entire range of relative density. The 
difference between the strength of R-meta and C-meta becomes negli-
gible as the density increases since the two shapes are similar at cases of 
high relative density. The O-meta shows out-of-plane post-buckling 
behavior for all relative density cases whereas the two other meta-
materials show in-plane buckling behavior at low density and out-of- 
plane buckling behavior at high density. 

This work demonstrates controllable buckling behavior and 
enhanced buckling strength at low relative density. However, our 
analysis assumes linear elasticity, thereby excluding the consideration of 
geometric nonlinearity and self-contact, which are commonly observed 
in soft materials. Future investigations could focus on controlling 
buckling behavior under large deformations to uncover additional local 
buckling mechanisms triggered by geometric nonlinearity, such as 
crease localization, fold localization, and ridge location [45]. 

4. Conclusions 

We enhance the buckling strength of metamaterials via a generative 
machine learning-based design optimization approach. The closed 
piecewise Bézier curve is employed to model the shape of the meta-
material with more flexible design space than other models. The NN is 
trained to predict objective function consisting of a penalty term of 
relative density and buckling strength using the shape of the unit cell as 
an input. The NN is then combined with genetic optimization and used 
to make greedy decisions during optimization, which accelerates the 
optimization process. The optimized structure has improved buckling 
strength by 842 %, 55 %, and 90 % compared with three reference 
models and shows predominant post-buckling behavior compared to 

these three models. The metamaterials are fabricated by additive 
manufacturing and our design is validated by compressive testing. The 
buckling strength measured from our experiments is matched with 
simulation results. We believe this innovative approach opens up pos-
sibilities for advancing mechanical properties beyond the constraints of 
human knowledge in metamaterial design. 
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