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Effect of Constituent Materials on Composite Performance:
Exploring Design Strategies via Machine Learning

Chun-Teh Chen and Grace X. Gu*

Nature assembles a range of biological composites with remarkable
mechanical properties despite being composed of relatively weak polymeric
and ceramic components. However, the architectures of biomaterials cannot
be considered as optimal designs for engineering applications since
biomaterials are constantly evolving for multiple functions beyond carrying
external loading. Here, it is aimed to develop an intelligent approach to design
superior composites from scratch—starting from constituent materials. A
systematic computational investigation of the effect of constituent materials
(assumed to be perfectly brittle) on the behavior of composites using an
integrated approach combining finite element method, molecular dynamics,
and machine learning (ML) is reported. It is demonstrated that instead of
using brute-force methods, machine learning is a much more efficient
approach and can generate optimal designs with similar performance to those
obtained from an exhaustive search. Furthermore, it is shown that the
toughening and strengthening mechanism observed in composites at the
continuum-scale by combining stiff and soft constituents is valid for
nanomaterials as well. Results show that high-performing designs of
graphene nanocomposites can be generated using our ML approach. This
novel ML-based design framework can be applied to other material systems
to study a variety of structure–property relationships over several
length-scales.

1. Introduction

Creating new structural materials with superior mechanical
properties while still being economically efficient is one of the
ultimate goals of modern engineering applications.[1] Compos-
ites are widely used in the design of structural materials in order
to satisfy specific property requirements.[2] The essential trait of
composites lies in the ability to combine two or more constituent
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materials (base materials) in a particular
predetermined architecture. The base ma-
terials often have very distinctive properties
and can work together to create composites
with properties different from their con-
stituents. From the engineering point of
view, the base materials should be placed
in an optimal architecture to achieve the
highest performance for a given design ob-
jective. However, traditional manufacturing
methods have limited composite architec-
tures to mostly laminate structures, with
stacked layers consisting of fibers in a ma-
trixmaterial. Thus, the full potential of com-
posites, with their vast design space, is diffi-
cult to be realized. In recent years, with ad-
vances in additive manufacturing, it is now
possible to create complex composite archi-
tectures that consist of internal voids,multi-
ple materials, and irregular shapes.[3] Facili-
tating novel fabrication techniques enables
higher resolution and more precise control
compared to traditional manufacturing
methods.[4] Specifically, advanced manufac-
turing leads to the possibility of biomimicry,
where many natural materials (i.e., nacre
and bone) are comprised of complex
architectures over several length-scales.

Nature hosts an elegant and plentiful array of adequate
solutions for achieving superior mechanical properties under
material composition constraints. Studying the architectures
of biomaterials, we are able to learn various design strategies
as to how organisms evolve to survive in their environments
and apply that knowledge to create new engineering materials.
This approach is often referred to as biomimicry and pursuant
designs are termed bioinspired.[5,6] Nevertheless, the architec-
tures of biomaterials cannot be considered as optimal designs,
at least in terms of mechanical properties. This is due to the fact
that organisms are evolving biomaterials for multiple functions,
such as for catching prey or transporting nutrients, not only for
carrying external loading. Additionally, organisms are limited
to the material constituents available in their surroundings and
those that can be produced via biosynthesis. As optimal designs
of composites highly depend on the properties of base materials,
creating new composites by just mimicking the architectures of
biomaterials but using different base materials is not an ideal
approach. While biomaterials are important sources of inspira-
tion, we should view them more like a flexible template rather
than a rigid recipe. Thus, it is crucial to develop an intelligent ap-
proach to design composites from scratch. Various optimization
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methods, such as greedy algorithms and gradient-based al-
gorithms, are widely applied to design composites and some
other design problems for different objectives.[7] However, as
composite design problems are usually nonconvex, the optimal
solutions obtained from those optimization methods often
depend on the initial geometry adopted in the optimization pro-
cess. Consequently, the solutions not only vary from one initial
geometry to another but also, in some cases, can be stuck in poor
local minima (or critical points). On the other hand, machine
learning (ML), a data-driven approach, is a promising alternative
method to design composites.[8–10] Recent rapid advances in ML
techniques showed various successful applications in the field
of computational mechanics. We have demonstrated that ML
techniques can accelerate the composite design process by learn-
ing the structure–property relationships from training data.[9,10]

Hanakata et al. reported how ML techniques can be applied to
the design of kirigami-inspired stretchable materials.[11]

Three major factors that affect the mechanical properties
of composites are: i) the properties of base materials; ii) the
topology (architecture) of how base materials are placed spatially;
iii) the volume fraction of base materials. In this work, all these
three factors will be explored to study their effects on composite
performance under Mode I fracture. Specifically, we aim to
understand how the modulus, toughness, and volume fraction
of base materials (assumed to be perfectly brittle) affect the ef-
fective toughness, strength, and stiffness of composites, as well
as how the optimal designs vary when different base materials
are chosen for creating composites. Results in this work provide
guidelines for choosing base materials to create composites
with superior mechanical properties. Note that searching for the
optimal designs of composites is extremely challenging due to
the astronomical number of possible material and geometrical
combinations. Equipped with these tools on how to choose
base materials to create composites with desired properties,
the selection of base materials is no longer a design variable.
Thus, the design space can be significantly reduced following
the design guidelines formulated in this work. Moreover, we
demonstrate a computational design approach combining
machine learning and finite element method (FEM) for creating
tougher and stronger composites. With this, we aim to develop
highly accurate and efficient ML models for composite design
problems. Finally, we explain the physics of the toughening and
strengthening mechanism observed in composites. Note that
some toughening mechanisms have been shown to be effective
at several different length-scales. For instance, the toughening
mechanism of nacre comes from its “brick-and-mortar” struc-
ture, in which stiff aragonite tablets (5–15 µm in diameter) are
glued together with soft biopolymer. This “brick-and-mortar”
structure has been applied to design composites (in the scale of
centimeters) and graphene–oxide nanocomposites (in the scale
of nanometers).[5] Here, we are interested in whether the tough-
ening and strengthening mechanism observed in composites
(continuum-scale) due to the geometrical effect of combining
stiff and softmaterials is also valid for nanomaterials (nanoscale).
In this case study, we use graphene and hydrogenated graphene
as base materials to create a graphene nanocomposite with the
topology designed by machine learning. Molecular dynamic
(MD) simulations are performed to investigate the mechanical

responses of the graphene nanocomposite and its basematerials.
The MD results are compared with the ML predictions.

2. Results and Discussion

2.1. Effect of Base Material Modulus Ratio

In this work, we consider composites made up of perfectly brittle
linear elastic materials, in whichmaterials do not exhibit yielding
(plastic deformation) before failure. The toughness of such ma-
terial can be quantified as the amount of elastic energy per unit
volume that the material can absorb prior to failure, which can
be written as:

T =
εf∫

0

σdε = Eε2f

2
= σ 2

f

2E
(1)

where T is the toughness, E is the Young’s modulus, εf is the fail-
ure strain, and σf is the failure stress (material strength). There
are several ways to describe the mechanical behavior (stress–
strain curve) of a material undergoing catastrophic failure by us-
ing a combination of these material properties (i.e., T, E, εf , and
σf ). Equation (1) shows that any two of these material properties
can sufficiently define the mechanical behavior of a material. In
this work, to study the effect of base materials on composite per-
formance, the modulus E and toughness T of base materials are
used as the two design variables. We start the investigation with
a simple composite system, an 8 by 8 composite systemmade up
of two base materials, in which one of them is a stiff material and
the other is a soft material. The details of this composite system
are shown in Figure S1, Supporting Information and described
in the Experimental Section. The number of possible combina-
tions in this composite system is 232 (4 294 967 296) as geomet-
rical symmetry is assumed. A brute-force search combined with
finite element analysis is performed to calculate the performance
(toughness, strength, and stiffness) of all possible combinations
underMode I fracture.
In this composite system, the modulus ratio of base materials

is set to 10 and the toughness ratio is set to 1. The modulus ra-
tio is defined as the modulus of the stiff material divided by that
of the soft material; the toughness ratio is defined as the tough-
ness of the stiff material divided by that of the soft material. A
toughness ratio of 1 means that the stiff and soft materials have
the same toughness. Thus, we can eliminate the effect of using
base materials with different toughness and only focus on the ge-
ometrical effect of combining stiff and soft materials on compos-
ite performance. After the brute-force search, the optimal designs
for high toughness with different volume fractions are identified
and shown in Figure 1. The volume fraction is defined as the
number of soft elements divided by the total number of elements.
The volume fraction of 0% represents a completely stiff matrix;
the volume fraction of 100% represents a completely soft matrix.
Note that this volume fraction definition is different from that
commonly used for fiber-reinforced composites, in which the vol-
ume fraction is usually defined as the fraction of stiff materials
(i.e., fibers).
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Figure 1. Optimal designs for high toughness, using base materials with the modulus ratio of 10 and toughness ratio of 1, for the 8 by 8 composite
system. The results are obtained by the brute-force search for different volume fractions. The stiff elements are shown in pink and the soft elements are
shown in black. The number below each optimal design is the volume fraction of the design.

The optimal designs for other objectives, including low tough-
ness, high strength, low strength, high stiffness, and low stiff-
ness, with different volume fractions are shown in Figures S2–
S6, Supporting Information, respectively. With these optimal de-
signs identified in this work, we can benefit from learning design
strategies to achieve different objectives. For instance, it can be
observed in Figure 1 that a common design strategy to achieve
high toughness is to use the soft material for the crack-tip ele-
ments and the stiff material for the elements above and below
the crack-tip elements (Figure S7, Supporting Information). The
physical explanation of this design strategy is as follows: From
Equation (1), it can be calculated that the failure strain of the
soft material is considerably larger than that of the stiff mate-
rial (εf , soft/εf , stiff = 3.16) in this composite system. Thus, using
the soft material for the crack-tip elements helps postpone crack
propagation. Additionally, using stiff materials for the elements
above and below the crack-tip elements reduces the strain (εxx)
of the crack-tip elements, thus increasing the toughness of the
composites. It is discovered that this design strategy not only ap-
plies to this specific composite system. When the toughness of
the base materials is the same, this design strategy applies to all
composite systems made up of stiff and soft materials with dif-
ferent modulus ratios. More discussions on the effect of adding
the soft material on composite toughness can be found in the
Supporting Information.
To study the effect of the base material modulus ratio

(Estiff/Esoft) on composite performance, three composite sys-
tems with various modulus ratios (10, 5, and 2) are considered.
Themechanical properties of these composite systems are shown
in Figure 2. Different modulus ratios are achieved by varying the
modulus of the soft material while keeping the modulus of the
stiff material the same. Moreover, the toughness ratio is fixed to
1 in these composite systems. The toughness values shown in

Figure 2 are normalized by the toughness of the composite made
up of all stiffmaterial. The same normalizationmethod is applied
to the strength and stiffness values as well. The optimal designs
for high toughness using base materials with the modulus ratios
of 10, 5, and 2 are shown in Figure 1; Figures S8 and S9, Sup-
porting Information, respectively. Although the optimal designs
are slightly different when using base materials with different
modulus ratios, it can be observed that the common design
strategy proposed above applies to all these three composite sys-
tems. Comparing the toughness values of these three composite
systems, the mean and maximum toughness (Figure 2a,b) in-
creases as themodulus ratio increases. This is due to the fact that
using the soft material with a lower modulus (higher modulus
ratio) causes a larger influence (geometrical effect) on composite
performance. Thus, higher maximum toughness (Figure 2b) and
lower minimum toughness (Figure 2c) can be observed in the
composite system with a higher modulus ratio. As the improve-
ment on the maximum toughness (Figure 2b) is much more
significant than the decrement on the minimum toughness
(Figure 2c), the mean toughness (Figure 2a) increases as the
modulus ratio increases. However, themean strength (Figure 2d)
does not always increase as the modulus ratio increases. From
Equation (1), it can be calculated that the strength of the soft
material decreases as the modulus ratio increases. Conse-
quently, when the volume fraction is high (more soft material is
added), the mean strength (Figure 2d) of the composite systems
decreases as the modulus ratio increases. Higher maximum
strength (Figure 2e) and lower minimum strength (Figure 2f)
can also be observed in the composite system with a higher mod-
ulus ratio. Finally, using the soft material with a lower modulus
(higher modulus ratio) reduces the stiffness (mean, maximum,
and minimum) of the composite systems (Figure 2g–i). Thus,
the stiffness of the composite systems decreases as the volume
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Figure 2. Effect of the base material modulus ratio on composite performance with different volume fractions. a–c) show the effect on the mean,
maximum, and minimum toughness of the composites, respectively. d–f) show the effect on the mean, maximum, and minimum strength of the
composites, respectively. g–i) show the effect on the mean, maximum, and minimum stiffness of the composites, respectively. The results are obtained
by the brute-force search for the 8 by 8 composite systems with various modulus ratios, in which the toughness ratios are fixed to 1.

fraction increases (more soft material is added). The optimal
volume fraction for high stiffness is 0% (no soft material is
added), as expected.

2.2. Effect of Base Material Toughness Ratio

To study the effect of the basematerial toughness ratio (Tstiff/Tsoft)
on composite performance, three composite systems with vari-
ous toughness ratios (1, 2, and 5) are considered. The mechani-
cal properties of these composite systems are shown in Figure 3.
Different toughness ratios are achieved by varying the toughness
of the soft material while keeping the toughness of the stiff ma-
terial the same. Moreover, the modulus ratio is fixed to 10 in
these composite systems. In Figure 3, the toughness, strength,
and stiffness values are normalized using the same normaliza-
tion method applied to the results shown in Figure 2. To have a
better comparison, the first composite system shown in Figure 3,
with the toughness ratio of 1 andmodulus ratio of 10, is the same
as the first composite system shown in Figure 2. The optimal de-

signs for high toughness using basematerials with the toughness
ratios of 1, 2, and 5 are shown in Figure 1; Figures S10 and S11,
Supporting Information, respectively. Comparing the toughness
values of these three composite systems, the toughness (mean,
maximum, and minimum) decreases as the toughness ratio in-
creases (Figure 3a–c). This is due to the fact that using the soft
material with a lower toughness (higher toughness ratio) reduces
the overall toughness of the composite systems. However, the
geometrical effect of combining stiff and soft materials can still
make some composite designs tougher than a completely stiff
matrix, even using the soft material with a lower toughness. Con-
sequently, an improvement on the mean and maximum tough-
ness can be observed when the volume fraction is not too high
(Figure 3a,b).
From Equation (1), it can be calculated that the strength of

the soft material decreases as the toughness ratio increases.
Thus, the strength (mean, maximum, and minimum) of the
composite system decreases as the toughness ratio increases
(Figure 3d–f). For the composite systems with a high toughness
ratio (2 and 5), the mean strength decreases as the volume
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Figure 3. Effect of the base material toughness ratio on composite performance with different volume fractions. a–c) show the effect on the mean,
maximum, and minimum toughness of the composites, respectively. d–f) show the effect on the mean, maximum, and minimum strength of the
composites, respectively. The results are obtained by the brute-force search for the 8 by 8 composite systems with various toughness ratios, in which
the modulus ratios are fixed to 10. The effect on the stiffness of the composites is not shown since changing only the toughness ratio of base materials
does not affect the stiffness of the composites.

fraction increases (Figure 3d). Note that even using the soft
material with a low toughness (low strength as well), the ge-
ometrical effect of combining stiff and soft materials can still
make some composite designs stronger than a completely stiff
matrix. Thus, an improvement in the maximum strength can be
observed when the volume fraction is not too high (Figure 3e).
The stiffness of the composite systems does not vary with the
toughness ratio since the modulus ratio of the base materials is
fixed. Thus, the effect of the toughness ratio of base materials
on the stiffness of composites is not shown in Figure 3.

2.3. Performances of Various Machine Learning Models

In previous sections, we investigate composites at the
continuum-scale and search for the optimal designs based
on the properties of base materials. Here, we aim to understand
whether the optimal designs identified at the continuum-scale
can be transferred directly to a smaller length-scale composite
system. We create a graphene nanocomposite system in which
graphene and graphane (hydrogenated graphene) are chosen as
the base materials. The design objective is to create a tougher
and stronger graphene nanocomposite. We use the brute-force
search in previous sections to study the effect of modulus and
toughness ratios of base materials on composite performance,
as well as to identify the optimal designs for various objectives.
However, brute-force methods are very computationally expen-
sive. For instance, to search for the optimal designs of an 8 by
8 composite system requires running 232 (4 294 967 296) FEM
simulations. For a larger composite system, using brute-force

methods to search for the optimal designs is computationally
intractable. As demonstrated in our previous work,[9,10] ML
techniques can be applied to generate high-performing designs
of composites by learning the structure–property relationships
from a small amount of training data. Here, we extend our
previous work to investigate the performance of different ML
models for the graphene nanocomposite design problem. Three
ML models including the linear model, nonlinear model, and
convolutional neural network (CNN)model are investigated. The
details of these ML models are described in the Experimental
Section. To evaluate the performance of these ML models,
we start with an 8 by 8 composite system. The modulus and
toughness ratios of graphene and graphane (base materials) are
set to 2 to mimic their actual material properties (to be discussed
in the next section). The volume fraction is set to 50%, which
gives the largest design space with around 600 million possible
combinations. 800 000 training samples are used to train these
ML models and 200 000 testing samples are used to evaluate
their accuracy. After the training process (see the Experimental
Section for details), these ML models are applied to predict the
toughness of composites without running FEM simulations.
Comparisons of ML predictions and FEM results are shown

in Figure 4. The loss in these ML models during the train-
ing process is shown in Figure S12, Supporting Information.
Among these ML models, the linear model provides the lowest
accuracy (highest error) with the mean squared error (MSE) of
0.04 for both training and testing data (Figure 4a). Additionally,
the linear model performs much worse on the highly ranked
samples (Figure 4b). The nonlinear model provides better ac-
curacy with the MSE of 0.01 for both training and testing data
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Figure 4. Comparisons of ML predictions and FEM results for toughness. The results in a) and b) are obtained by the linear model. The MSE in the
linear model is 0.04 for both training and testing data. The results in c) and d) are obtained by the nonlinear model. The MSE in the nonlinear model is
0.01 for both training and testing data. The results in e) and f) are obtained by the CNN model. The MSE in the CNN model is 0.0002 for both training
and testing data. (b), (d), and (f) are the zoomed-in results (top 10 000 FEM rank) of (a), (c), and (e), respectively. The 8 by 8 composite system with
the volume fraction of 50%, in which the modulus and toughness ratios are set to 2, is used for the comparison. The number of possible combinations
in this composite system is around 600 million. 800 000 training samples are used to train the ML models and 200 000 testing samples are used to
evaluate their accuracy.

(Figure 4c). The performance of the nonlinear model on the
highly ranked samples (Figure 4d) is also better than that of the
linear model (Figure 4b) due to the additional nonlinear term in
the hypothesis. Finally, the CNN model provides the highest ac-
curacy with the MSE of 0.0002 for both training and testing data
(Figure 4e). The performance of the CNN model on the highly
ranked samples (Figure 4f) is also the best among theseMLmod-

els since the CNN model has a much higher learning capacity
(model complexity) than the other two ML models. However, to
generate the optimal designs of composites, a searching process,
such as sampling, screening, or optimization, is required when
using the CNNmodel (or other complexMLmodels) for the com-
posite design problem. As demonstrated in our previous work,[10]

where we used a CNN model together with a self-learning
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Figure 5. Optimal designs for high toughness, using base materials with the modulus ratio of 2 and toughness ratio of 2, for the 16 by 16 composite
system. The results are obtained by machine learning for different volume fractions. The stiff elements are shown in pink and the soft elements are
shown in black. The number below each optimal design is the volume fraction of the design.

algorithm to search for high-performing designs of hierarchical
composites. On the other hand, the linear model and nonlinear
model can generate optimal designs directly after the training
process, without the need for any searching (see the Experimental
Section for details). Moreover, among these two ML models, the
nonlinear model performs much better than the linear model,
especially on the highly ranked samples. Thus, to balance the ac-
curacy and efficiency, the nonlinear model is adopted to gener-
ate optimal designs for larger composite systems. The computa-
tional cost of the ML approach compared to the finite element
analysis is discussed in the Supporting Information. In general,
the ML approach provides more than a 100 000-fold speedup.
Here, we consider a 16 by 16 composite system with the mod-

ulus ratio of 2 and toughness ratio of 2 to simulate graphene and
graphane. The system has a design space of 2128 combinations as
geometrical symmetry is assumed. Equipped with a highly accu-
rate and efficient ML model, searching for the optimal designs
of larger composite systems is now possible. After the training
process, the optimal designs for different volume fractions gen-
erated by theMLmodel (nonlinearmodel) are shown in Figure 5.
It can be observed that the design strategy to achieve high tough-
ness is different from that observed in Figure 1; Figures S8 and
S9, Supporting Information in which the toughness of the base
materials is the same. In Figure 1; Figures S8 and S9, Supporting
Information, as mentioned before, a common design strategy to
achieve high toughness is to use the soft material for the crack-tip
elements and the stiff material for the elements above and below
the crack-tip elements. However, as shown in Figure 5, using the
soft material for the crack-tip elements is no longer a good idea.
In fact, the optimal design shown in Figure 5 have no soft mate-
rial at the crack tip. The reason is that the soft material used in
Figure 5 has a lower failure strain than the soft materials used
in Figure 1; Figures S8 and S9, Supporting Information. In the
composite system shown in Figure 5, the stiff and soft materials

have the same failure strain (εf , soft/εf , stiff = 1) as the modulus
and toughness ratios are the same. Thus, using the soft mate-
rial for the crack-tip elements cannot aid in the postponement of
crack propagation. In fact, it is not ideal since the soft material
has only 50% of the toughness of the stiff material.
To evaluate the performance of the optimal designs generated

by the ML model, we first consider an 8 by 8 composite system
with a modulus ratio of 2 and toughness ratio of 2. We compare
the toughness of the ML designs for different volume fractions
with the optimal designs identified by the brute-force search.
Figure 6a shows that the toughness of the ML designs is almost
identical to that of the optimal designs identified by the brute-
force search. We want to make a note that the ML solutions are
not necessarily global minima (the best designs) in any formal
sense; our goal is to find solutions that are not poor local minima
and close enough to global minima. More discussions on the
issue of local minima in the composite design problems can be
found in the Supporting Information. Note that the toughness
of the ML designs for the volume fraction lower than 21.875%
or higher than 78.125% is not shown in Figure 6a because the
number of possible combinations in an 8 by 8 composite system
with the volume fraction in these ranges is less than the number
of samples (1 000 000) required for training and testing the ML
model. With the success in the 8 by 8 composite system, we
consider a 16 by 16 composite system with the modulus ratio of
2 and toughness ratio of 2, in which theML designs are shown in
Figure 5. Although we cannot generate brute-force search results
for comparison due to computational limitations, it can be ob-
served that the toughness of the ML designs is much higher than
that of the training samples (Figure 6b). Additionally, Figure 6b
shows that the optimal volume fraction for high toughness is
40.625% for the composite system considered here. The property
distributions of the training samples with this volume fraction
(40.625%) are shown in Figure 6c,d. It can be observed that the
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Figure 6. Performance of the optimal designs generated by machine learning. a) shows the toughness of the optimal designs generated by machine
learning compared to the brute-force search results for the 8 by 8 composite system. b) shows the toughness of the optimal designs generated by
machine learning compared to the highest toughness and mean toughness of the training samples for the 16 by 16 composite system. The optimal
volume fraction for high toughness is found as 40.625%. c) shows the toughness and stiffness of the optimal design generated by machine learning
compared to the training samples for the 16 by 16 system with the optimal volume fraction. d) shows the toughness and strength of the optimal design
generated by machine learning compared to the training samples for the 16 by 16 system with the optimal volume fraction. In these composite systems,
the modulus and toughness ratios are set to 2. The color in (c) and (d) represents the toughness values of the training samples.

correlation between stiffness and toughness is weak (Figure 6c).
On the other hand, the correlation between strength and tough-
ness is strong (Figure 6d), which suggests that if a composite
design has high strength, it also has high toughness, and vice
versa. Compared with the training samples, the ML design has
much higher toughness, which is expected as the ML model is
trained to generate designs for high toughness. Although the
ML model is not trained to generate designs for high strength,
the ML design also has much higher strength. The reason is that
the strength value and toughness value are highly correlated.
Interestingly, the stiffness of the ML design is also much higher
than that of the training samples. These results show that theML
model can learn the structure–property relationships from train-
ing data and generate designs with much better performance.

2.4. Graphene Nanocomposite Design from Machine Learning

To study whether the toughening and strengthening mechanism
due to the geometrical effect of combining stiff and softer
material is valid for nanomaterials, a graphene nanocomposite
made up of graphene (stiff) and graphane (soft) with the topology
designed by machine learning is investigated. The optimal de-
sign with the optimal volume fraction (40.625%) is adopted from
Figure 5 to create an MD model for the graphene nanocompos-

ite. MD models for graphene and graphane are also created for
comparison. As with the FEMmodels, these MDmodels have an
edge crack of 25% of the model width in the y-direction, and dis-
placement boundary conditions are applied along the x-direction
to simulate Mode I fracture. The details of these MD models
are shown in Figure 7a. Before running tensile tests to simulate
Mode I fracture, these MD models are fully relaxed to eliminate
the initial stresses (see the Experimental Section for details).
Figure 7b shows the force–strain curves of the graphene,
graphane, and graphene nanocomposite models, under Mode
I fracture. From the force–strain curves, the modulus ratio
of graphene and graphane can be approximated to 2 and the
toughness ratio can be approximated to 2, as well. These are
the modulus and toughness ratios adopted in the ML model to
generate the optimal design in the previous section. Note that
the exact modulus ratio cannot be defined since the force–strain
curves are not completely linear. In Figure 7b, it can be observed
that the graphene nanocomposite model (designed by machine
learning) has higher toughness and strength compared to its base
materials. Additionally, the ML predictions (Figure 6b) based on
the FEM results (continuum-scale analysis) show that the opti-
mal design has toughness of about 310% of the toughness of the
stiff material (i.e., graphene). In the MD simulations (Figure 7b),
the toughness of the graphene nanocomposite model is about
210% of the toughness of the graphene model. The toughness

Adv. Theory Simul. 2019, 1900056 C© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim1900056 (8 of 12)



www.advancedsciencenews.com www.advtheorysimul.com

Figure 7. Performance of the graphene nanocomposite designed bymachine learning. a) The atomisticmodels of pure graphene and graphene nanocom-
posite. Zoomed-in images from the yellow-boxed regions are shown on the right. Green represents carbon atoms and pink represents hydrogen atoms.
b) shows the force–strain curves of the graphene, graphane, and graphene nanocomposite models under the tensile tests. In this composite system,
graphene and graphane are adopted as the base materials, in which graphene serves as the stiff material and graphane serves as the soft material. c)
shows the strain fields of the graphene, graphane, and graphene nanocomposite models before crack propagation. The color in (c) represents the strain
values.

improvement observed in the MD simulations is on the same
order of magnitude as the ML predictions. Therefore, we
confirm the hypothesis that the toughening and strengthening
mechanism due to the geometrical effect of combining stiff and
soft material is valid for both continuum-scale and nanoscale
composites.
Figure 7c shows the strain fields (εxx) of the graphene,

graphane, and graphene nanocomposite models at the critical
loading condition (close to the point of crack propagation). It
can be observed that there is a significant strain concentration at
the crack tip in the strain fields of the graphene and graphane
models, whereas the strains at other regions remain very low.
This is the typical behavior of a homogeneous material under
Mode I fracture. In the strain field of the graphene nanocom-
posite model, although there is also a strain concentration at the
crack tip, the strains at other regions are also very high. This
uniform strain distribution is due to the fact that the geomet-
rical effect of combining stiff and soft material delocalizes the
strain concentration at the crack tip. Consequently, compared
with its base materials, more elastic energy can be stored in the
graphene nanocomposite model prior to failure. Comparison of
strain fields before and after crack propagation is shown in Fig-
ure S13, Supporting Information. Note that the dimension of the
graphene nanocomposite model is 280 Å by 280 Å and the de-
sign grid is 16 by 16. Thus, the design resolution is 17.5 Å. It
is currently very challenging to fabricate the design with such

high resolution. However, in recent years, the fabrication tech-
niques for hydrogenated graphene and other 2D materials have
been significantly improved. A promising recent study showed
that nanoresolution patterning on hydrogenated graphene can
be realized with the resolution of the patterning up to 18 nm.[12]

3. Conclusions

In this work, we present a systematic computational investigation
on the effect of constituent materials on the behavior of compos-
ites under Mode 1 fracture. By using the brute-force search, we
show that composites made out of stiff and soft materials with
random designs, statistically, are tougher than the base materi-
als alone. Moreover, for those composites with optimal designs,
depending on the properties of the base materials, the effective
toughness can be orders of magnitude higher than the base ma-
terials alone. We show that a higher toughness improvement can
be expected when the modulus ratio of base materials is higher.
That is to say, when choosing a soft material to pair with a stiff
material, a soft material with a lower modulus will give rise to a
higher toughness improvement. In addition to themodulus ratio,
the toughness ratio of base materials is also critical. Results show
that the toughness improvement decreases as the toughness ra-
tio of base materials increases. In other words, a high toughness
improvement can be expected only when the toughness of the
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soft material is comparable to that of the stiff material. The ef-
fect of base materials on the strength of composites is similar to
that on the toughness. Therefore, an ideal soft material to pair
with a stiff material for high toughness and strength improve-
ments is a soft material with low modulus and high toughness
at the same time. We demonstrate that, instead of using com-
putationally expensive brute-force methods to search for the op-
timal designs of composites, using machine learning is a much
more efficient approach. We show that, with a proper hypothesis,
highly accurate ML predictions can be achieved and the optimal
designs of composites can be generated directly without requir-
ing any sampling, screening, or optimization process. Results
show that our ML-based approach can generate high-performing
designs comparable to the brute-force search results and only
costs a fraction of the computational time. Consequently, our
ML-based approach can be applied to designing larger compos-
ite systems, in which using brute-force methods is computation-
ally prohibitive. Finally, we use graphene and graphane as base
materials to create a graphene nanocomposite with the topology
designed by machine learning. As demonstrated in our MD sim-
ulations, our graphene nanocomposite has higher toughness and
strength compared to its base materials. The result complements
our finite element analysis and confirms that the toughening and
strengthening mechanism due to the geometrical effect of com-
bining stiff and soft materials is also valid for nanomaterials.

4. Experimental Section
Finite Element Analysis: The composite design domain is discretized by

square elements. Four-node elements are implemented with an assump-
tion that the failure of elements occurs in the linear elastic regime. The
stiffness matrix of the four-node elements is shown in the Supporting In-
formation. An edge crack of 25% of the specimen width in the y-direction
is created by the insertion of double nodes. Displacement boundary con-
ditions are applied along the x-direction to simulate Mode I fracture. Ge-
ometrical symmetry is assumed in the composites since the edge crack
is located at the centerline of the specimen and the loading condition is
symmetric. The modulus of the stiff material is set to 1 GPa and the Pois-
son ratio is set to 1/3. The failure strain of the stiff material is set to 10%,
regardless of what modulus and toughness ratios are adopted in a com-
posite system. On the other hand, the failure strain of the soft material is
determined based on the modulus and toughness ratios in a composite
system. Note that the modulus of 1 GPa and the failure strain of 10% for
the stiff material can be changed to any other positive values without alter-
ing the results shown in this work. The optimal designs of composites only
depend on the relative properties (e.g., themodulus and toughness ratios)
of the base materials. After applying displacement boundary conditions,
the strain in the loading direction (εx x ) at the crack tip is used to calculate
the toughness and strength of a composite. Once the strain reaches the
failure strain of crack-tip elements (stiff and soft materials typically have
different failure strains), the composite is considered to have failed and its
toughness (area underneath the stress–strain curve) and strength (max-
imum stress) can be determined. The resistance of composites during
crack propagation is not considered here; instead, due to computational
limitations, the resistance of composites to initiate crack propagation was
considered.

Machine Learning Approach: ML calculations are performed using
TensorFlow, an open-source software library for machine learning
applications.[13] The geometries of training and testing samples are ran-
domly generated with the geometrical symmetry constraint. Their quanti-
tativemetrics (i.e., toughness, strength, and stiffness) are calculated using
finite element analysis. Three ML models are investigated in this work:

linear, nonlinear, and CNN models. The first ML model considered is a
linear model. The hypothesis in this model is:

y = wTx + b (2)

where w and b are weights and bias, respectively. x represents input data
(the geometry of a composite) and y represents the prediction (the scaled
toughness, strength, or stiffness). The second ML model considered is a
nonlinear model. The hypothesis in this model is:

y = ew
Tx+c + wTx + b (3)

where w and b are weights and bias, respectively. The new parameter c
represents the weight ratio of the nonlinear contribution (ew

Tx) and linear
contribution (wTx). The values of w, b, and c are optimized in the training
process. A larger c means that the nonlinear contribution is more signifi-
cant than the linear contribution. Using different hypotheses, other nonlin-
ear models can be created. The hypothesis that was used in this nonlinear
model is carefully selected as it is amonotonically increasing function with
respect to wTx. Thus, the following statement is valid:

wTx1 ≥ wTx2 → y
(
wTx1

)
≥ y

(
wTx2

)
(4)

Therefore, the input data xi that gives the highest value of y is the same as
the input data x j that achieves the highest value of wTx. As the weights w
are known after the training process, the input data x that gives the high-
est value of wTx (also the highest value of y) can be determined directly.
Consequently, this nonlinear model can generate the optimal designs of
composite systems directly without requiring any sampling, screening, or
optimization process. The third ML model considered is a CNN model
consisting of three hidden layers. The first two are convolutional layers with
32 features in the first layer and 64 features in the second layer. A patch of
3 by 3 and a stride of one with zero padding is adopted. The weights are
initialized with some randomness, added with a small bias, and passed
through the rectified linear unit (ReLU) activation function. The last layer
is a fully connected layer with 256 neurons. Note that searching for the
optimal hyperparameters for the CNN model is not a focus in this work.

The MSE is used to estimate the loss of these three ML models during
the training and testing processes. The MSE is computed as:

MSE = 1
n

n∑
i = 1

(yi − ŷi )2 (5)

where n is the number of samples used to calculate theMSE, yi represents
the prediction of sample i (from ML models) and ŷi represents the actual
quantity of the sample (from finite element analysis). The training process
for these three ML models is identical. 800 000 samples are used to train
theseMLmodels and 200 000 samples are used to evaluate their accuracy.
Note that the training and testing samples are randomly generated. The
training batch size is 10 000 and the training loop is 100 000.

Molecular Dynamics Modeling: Full-atomistic models for graphene,
graphane, and the graphene nanocomposite are created for MD simula-
tions. The dimension of these models is 280 Å by 280 Å in the x–y plane,
and an edge crack of 25% of the model width (70 Å) in the y-direction
is introduced to simulate Mode I fracture (Figure 7a). Graphane is a
form of hydrogenated graphene with a formula CH. Hydrogen atoms
are randomly added on either side of the graphene basal plane in the
graphane model. Graphene and graphane are chosen as base materials
to make a graphene nanocomposite, in which graphene serves as the
stiff material and graphane serves as the soft material. MD simulations
are implemented using Large-scale Atomic/Molecular Massively Parallel
Simulator (LAMMPS).[14] The adaptive intermolecular REBO potential
(AIREBO)[15] is implemented and the C─C bond cut-off distance is set
to 1.95 Å.[16] The time step is set to 0.25 fs to ensure the stability and to
reflect the high vibration frequency of hydrogen atoms. The simulation
box size in the x-direction is the same as the model length (280 Å) to keep
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the periodicity in the x-direction (loading direction). However, to simulate
Mode I fracture, the models should not be periodic in the y-direction.
Thus, the periodicity in the y-direction is eliminated by adding a vacant
space with a length of 20 Å. The simulation box size in the z-direction
(out-of-plane direction) is set to 20 Å to ensure that the models do not
interact with their periodic images in the z-direction.

Periodic boundary conditions (PBCs) are applied. The left and right
edges (one-atom width) of the models are fixed in the z-direction and are
free to move in the other two directions. Three steps of MD equilibrations
are performed to fully relax the models. After energy minimization using
the conjugate gradient (CG) algorithm, the systems are equilibrated with
the canonical (NVT) ensemble at a constant temperature of 300 K for 10
ps. As the models are periodic in the x-direction, to ensure that the mod-
els are fully relaxed in the x-direction, the systems are then equilibrated
with the isothermal–isobaric (NPT) ensemble at a constant temperature
of 300 K and zero pressure in the x-direction for 10 ps. Finally, the systems
are equilibrated again with the NVT ensemble at a constant temperature
of 300 K for 10 ps. The pressures (x-, y-, and z-directions) of the systems
during the MD equilibrations are shown in Figures S14–S16, Supporting
Information. It can be seen that the pressures are converged to zero, show-
ing that the systems are fully relaxed. Tensile tests using a displacement
controlled method[17] are performed to measure mechanical responses
of the models under Mode I fracture. During the tensile tests, the simu-
lation boxes are stretched in the x-direction with a constant engineering
strain of 0.0001 applied every 1 ps, which is equivalent to an engineer-
ing strain rate of 0.1 ns−1. For the size of the models, this strain rate is
slow enough to accurately simulate mechanical responses of graphene in
MD simulations.[18] During the tensile tests, the systems are equilibrated
with the NVT ensemble at a constant temperature of 300 K. Note that
the graphene nanocomposite is made out of base materials with different
thicknesses. The thickness of the graphene nanocomposite cannot be de-
fined. Thus, instead of measuring the tensile stress in the models during
the tensile tests, the tensile force was measured. Specifically, the tensile
force in the loading direction (Figure 7b) is derived from the carbon atoms
on the graphene basal plane excluding those on the left and right edges.
The Open Visualization Tool (OVITO)[19] and Visual Molecular Dynamics
(VMD)[20] are implemented for the visualization and strain analysis.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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