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Most monolithic engineering materials have positive Poisson’s
ratio and contract laterally relative to the direction of imparted
strain. However, auxetics are a class of materials that expand lat-
erally to the direction in which they are strained, exhibiting neg-
ative Poisson’s ratio (NPR).[1,2] The key to an auxetic material’s
NPR is the internal structural mechanism that creates a rota-
tional or leveraging effect of unit cell struts to the surrounding
cells causing counterintuitive expansion.[3–5] Combining an array
of auxetic cells forms metamaterials with tunable gradient prop-
erties depending on the unit cell geometry used and concentra-
tions of the respective Poisson’s ratio values.[6] Many unit cell
architectures have been studied; however, significant focus
has been conducted on the variations of the reentrant honeycomb
cell which behaves within a range of strain, as an effective NPR

unit cell expanding positively in all direc-
tions with positive imparted strain.[7–9]

Reentrant honeycomb cells are the focus
of this study because of their large basis
of research and relative geometric simplicity
for tuning behavior.[10] Due to the unique
mechanical properties of auxetics, NPR
materials are used in engineering applica-
tions, especially when thematerials undergo
significant deformation.[11] However, the
behavior of auxetics in soft-bodied materials
is still being developed and makes their
interaction in applications difficult to
predict.

Applications of auxetic metamaterials
have been explored in previous literature,
ranging from impact lattice structures,
medical stents, and others described in
depth in previous review studies, whose
main function is derived from their behav-
ior under strain.[12,13] Of particular impor-
tance to our work is the application of
auxetic metamaterials in 2D and 3D soft
bodies due to this counterintuitive defor-
mation behavior.[14] 2D elastomeric lattices
are currently in use and being explored in

sportswear and biomedical films that are able to conform to the
body. However, out-of-plane strain is still a design fault, imped-
ing progress for both applications.[15] 3D application studies have
also been conducted on the use of biomimetic soft-body manip-
ulators using fluidic control. Manipulator applications utilize
conventional kinematic models for simple movements but such
models restrain researchers to a predefined control methodology
when creating more complex control systems.[16] Researchers
have explored auxetic geometries to create a soft-bodied cylinder
using auxetic cell buckling failure for angular actuation.[17] This
work demonstrated fundamental aspects of NPR in 3D actuation
and incentivized our study to develop a workflow for designing
dynamic auxetics, using a similar form of an angularly actuated
cylinder. Aside from the pressure-driven actuation control sys-
tem, in many of these cases, the only way for the intricate struc-
tures to bemanufactured is through detailed casting or, as we use
in our approach, via an additive manufacturing system. Additive
manufacturing is an ideal method of creating various types of
metamaterials because 3D printers are capable of fabricating
complex architectures.[18–24] The coupled ability to rapidly and
iteratively discover new designs with machine learning and
experimentally validate results with additive manufacturing
marks a novel discovery process in manufacturing and materials
characterization.[25,26] The programmability of the additive
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Metamaterials can be designed to contain functional gradients with negative
Poisson’s ratio (NPR) that have counterintuitive behavior compared with
monolithic materials. These NPRmaterials, referred to as auxetics, are relevant to
engineering sciences because of their unique mechanical expansion. Previous
studies have explored compliant actuators using analytical and numerically
derived mechanics of materials principles. However, the control of compliant
gradient mechanisms frequently uses complex analytical equations combined
with traditional control algorithms, making them difficult to design. To confront
the design processes and computational load, herein, machine learning is used to
predict errors in compliant auxetic designs based on a mathematically optimal
deformation. Finite element analysis and experimental specimens validate the
theoretical mechanical behavior of a specific auxetic configuration as well as
demonstrate the capabilities of additive manufacturing of graded auxetic
materials. Pseudorandomized images and their respective computational
deformation results are used to train a regressive model and predict the deviation
from optimal behavior. The model predicts the deviation from the desired
behavior with a mean average percent error below 5% for the validation set.
Subsequently, a scalable workflow design process connecting the unique per-
formance of auxetics to machine learning design predictions is proposed.
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process is exploited through the digital placement of the cells
during the design of the metamaterials and when outputting
the printer’s manufacturing paths.

The behavior of auxetic metamaterials is derived from the geo-
metrical intuition of deformation from constitutive material prin-
ciples. Researchers from previous studies manually input the
geometry of the unit cells to produce the desired Poisson’s ratio,
which is usually time consuming when designing for specific
applications.[27] Some studies use computer-aided modeling
programs to approach auxetic designs with conventional topol-
ogy optimization tools, which require intermittent computa-
tional analysis confirming feasibility.[28] These preliminary
studies have accelerated the design of the metamaterial unit
cells and their predicted behavior but are eventually impeded
by complex analytical and numerical control models at larger
scales. Relevant literature is just now addressing the limitations
of conventional control systems and the application of machine
learning to help establish their data acquisition systems and
baseline control of soft manipulators.[29,30] Few studies have
been conducted on the use of machine learning to enhance
the design time of engineering metamaterials for actuating
applications.

The flux of data generated by computational sciences has
enabled the rise of machine learning for discovering patterns
in scientific data. The advent of powerful open-source machine
learning libraries, such as scikit-learn[31] and TensorFlow,[32]

allows for trends to be gleaned from large-scale datasets for phys-
ical engineering applications. Previously, data-driven methodol-
ogies have been applied to crack propagation prediction models,
in situ materials processing corrections, and composite material
property prediction.[33–38] A convolutional neural network (CNN)
is a specific machine learning model commonly used in com-
puter vision applications. CNNs utilize the convolution operation
to downsample multidimensional tensors, the weights and
biases of which are updated according to stochastic gradient
descent.[39] Recently, CNNs have been shown to be capable of
predicting mechanical properties from 2D designs using CNN
image regression.[40] In our case, the ability to predict nontrivial
deformation solutions of materials with a geometric substructure
is becoming increasingly important for the control systems
of soft robotics and deployable structures. Hyperelastic material
models have been studied for determining elastomer behavior,
and it has been shown that by integrating geometrical sub-
structures, empirical models output unconventional deforma-
tions.[41,42] Consequently, machine learning is used in this study
to determine practical designs in a attempt to bypass potentially
complex hyperelastic analytical methods.

Themethodology behind this work is based on the use of finite
element analysis (FEA) computational results to be used as
machine learning labels for determining novel engineering
designs of graded auxetics. The reentrant honeycomb cells only
require the strut angle to be modified for evaluating the repre-
sentative auxetic quality and provide simple metrics to be used
in machine learning feature selection. We aim to supplement
design time through machine learning and image processing
as well as predicting metamaterial behavior from an engineered
design. In addition, the study provides an avenue for nonexperts
to interpret designs that could be useful for compliant manipu-
lator designs. The experimental 2D and 3D specimens that are

produced validate the theoretical mechanical behavior of a spe-
cific auxetic configuration which aids in setting the optimal ref-
erence function for the FEA. Using a CNN, a regression model is
created for calculating the difference between the desired defor-
mation behavior and actual deformation. The resulting data-
driven model is proposed as a scalable machine learning
workflow.

Initially, 2D Python FEA and meshing suites are used to sim-
ulate a high-throughput array of auxetic metamaterial lattices for
uniaxial stress studies. Using FEA and meshing allows us to
quickly iterate over design choices and make the eventual data
science analysis with efficiently calculated simulations. Here
the process is summarized into the choice of the unit cell, con-
struction of the mesh, analysis of the mesh, and graphical
results.

The reentrant honeycomb unit cell is used because of its rela-
tively simple geometry for setting auxetic quality in individual
unit cells where the variation of Poisson’s ratio attainable is
shown in Figure 1a. Parameters for the auxetic quality are deter-
mined by the length and angle of the unit cell’s trusses. Two
dimensionally, the material cross section is greater in the purely
auxetic cell as compared with the nonauxetic cell by 22.6%
because the trusses are kept at the same width but form a larger
surface area in the auxetic cell. This surface area imbalance is
dominated by the auxetic or nonauxetic geometry and is not envi-
sioned to impact the theoretical Poisson’s ratio which is based on
the angles of the trusses.

The Python library Pygmsh then assigns object identifiers to
the nodes and placement in a computational field with the maxi-
mum metamaterial dimensions of 11� 11. This size is chosen
because it is approximately the size of the metamaterial lattices
from other studies and large enough to demonstrate regionally
significant metamaterial deformation. Each unit cell in the mesh-
ing module is simulated as a 2 cm� 2 cm geometrical cell where
the set Poisson’s ratio determines the angle of the truss. The cells
and their assigned Poisson’s ratio values establish an array from
the convention in Figure 1a, where the angle of the top-right
truss relative to the horizontal x-axis determines the magnitude
and sign of Poisson’s ratio for each cell. The mesh generation
propagates nodes based on the refinement specified within
the Python code. The level of refinement is chosen where the
resulting Jacobian is viable and where the simulation can reach
convergence on the order of several minutes.

After the nodes are propagated, the SolidsPy physics module
creates a computational graph from the nodes to impart uniaxial
stress onto the top of the metamaterial. All simulations have a
positive distributed force of 1000 Nm�1 on the top beam of
the material and fixed on the bottom, using properties for
NinjaFlex thermoplastic polyurethane (TPU), E¼ 0.1124 GPa
and v¼ 0.344. Although we use an elastomer in the simula-
tions, we operate on a linear elastic model because the strain of
a bulk material would retain a relatively uniform Young’s
modulus at a longitudinal strain of approximately εy¼ 0.3 for
all simulations.

Figure 1b,c compares auxetic distributions from the regional
auxetic placement function within the meshing code as well as
their final deformation states. The resulting data are stored as
x-displacement and y-displacement arrays for future data
processing on the regional deformation of 2D metamaterials.
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The 2D lattices are useful for visualizing the regional displace-
ment effect, but a 3D manipulator design is an ideal outcome
from the study because of the medical field’s interest in soft
actuators. An engineered function is created which will be
referred to throughout the study as the optimal design or func-
tion because of its correlation with a potential medical actuator
application. The optimal design defined in more geometrical and
mechanical terms is selected to exhibit high theoretical expan-
sion in the middle portion of the lattice by placing purely auxetic
cells in the mid-section of the metamaterial with purely nonaux-
etic cells on the quarters above and below the middle portion.
This optimal design is based on fundamentals for the mechanics
of materials where the lattice expands laterally to the direction of
stress based on concentrations of NPR in thematerial. To express
the viability of the optimal design, a small panel of experimental
testing is conducted to compare to the simulated model.
NinjaFlex TPU is used as the engineering material for this study
due to its low elastic modulus, relative to other printable thermo-
plastics, and the ability to reach the desired strain εy¼ 0.3
without plastic deformation. Figure 2a shows the graphical dis-
tribution of auxetic quality for the optimal 2D lattice and
Figure 2b shows its empirical expansion under εy¼ 0.3. The opti-
mal function is created in 2D which is capable of being wrapped
around a cylindrical pressure vessel. Experimentation is con-
ducted using a cylindrical tube with the auxetic lattice extruded
on the cylinder’s surface. A shell function in SolidWorks is
applied to the cylinder to form small bellows out of the cellular
geometry for pneumatic expansion. In Figure 2c, a graphic of
deformation is shown, demonstrating the hoop and axial stress
based on the mechanics of materials principles for pressure ves-
sels. The expansion of the auxetic cells compared with the

nonauxetic cells will theoretically cause greater NPR deformation
and in turn cause the cylindrical sample to actuate angularly in
the direction opposite the auxetic surfaces. The deformation pro-
cess is shown from 0-psi in Figure 2d to a maximum pressure of
100-psi (6.89� 105 Pascals) in Figure 2e. The 100-psi maximum
pressure extends the cylinder vertically in the y-direction by 3 cm
measured from the center of the cap at 0-psi and angular tilt of
the cylinder top þ10� from the reference y-axis in Figure 2.
Greater angular displacement could be possible by increasing
the depth of extrusion on the auxetic surface but would require
more advanced additive printing systems that include support
structures or with multimaterial printing using materials with
different Young’s moduli. These empirical tests confirm the the-
oretical basis for computational deformation of the 2D gradient
auxetic FEA modules.

Building on the programmability of FEA, images are used
instantiate the auxetic unit cell arrangement in the lattice. The
image in Figure 3a shows the optimal function’s auxetic distri-
bution in the top portion of the material with a binary v¼�1 and
v¼ 1 Poisson’s ratio value; the deformation concentration result
is shown in Figure 3b. The machine learning aspect of iterating
on random variations to predict displacement is inspired by
architected materials found in nature and their evolutionary iter-
ative design process. Mathematica is used to generate pseudoran-
dom images using several image processing functions that create
asymmetrical Rorschach (ink blot) images. The meshing pro-
gram assigns the unit cell matrix values according to the image
that Mathematica generates. Mathematica’s pseudorandomized
images are blurred using a Gaussian filter and applied to the
11� 11 grid-creating images similar to Figure 3c. This image
differs from the optimal image by containing theta angles as a

(a)

(b) (c)

Figure 1. a) Individual unit cell H� L, x-axis deformation ux, patterns by variation of angles θ, and theoretical Poisson’s ratio v, under 1/11th of full
metamaterial loading. Two FEA metamaterial distributions under full 1000 Nm�1 loading, b) lower half nonauxetic upper half auxetic and c) gradient of
nonauxetic bottom left to auxetic top right.
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distributed gradient of auxetic values within the range from
v¼�1 to v¼ 1 values of Poisson’s ratio and is shown with its
corresponding deformation in Figure 3d. The range of images
generated is then used to set the auxetic value of a 11� 11 image,
imparting the auxetic quality to the individual unit cells for FEA

simulation. The FEA solver then performs the simulation based
on material properties for NinjaFlex TPU and outputs the uniax-
ial stressed state of deformation for the input image. The optimal
input design in Figure 3e is chosen because of its intuitively
monomodal expansion for the metamaterial from the high
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Figure 2. a) Optimally engineered lattice for angular displacement where v¼ 1 represents nonauxetic positive Poisson’s ratio and v¼�1 is auxetic NPR.
b) Engineered lattice after extension. c) Fundamentals of pressure vessels expressed in a diagram using the 2D optimal lattice wrapped around a hollow
cylinder. d) Cylinder print without pressure actuation. e) After pneumatic expansion of the cylinder.
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(c)
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Figure 3. a) Pixelated image of half auxetic and half nonauxetic material H� L, 22 pixels� 22 pixels, and its b) resulting x-displacement graphs
with dimensions H� L, 22 cm� 22 cm. c) Randomized material image with pixel dimensions of H� L, 22 pixels� 22 pixels, and its d) resulting
x-displacement graphs with dimensions H� L, 22 cm� 22 cm. e) Optimal design along with f ) the mathematical correlation with its behavior in
red lines. g) Machine learning workflow model demonstrating the design cycle of the auxetic material.
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concentration of auxetic cells in the middle half of the material
and the nonauxetic cells in the quarters above and below the
middle. In Equation (1), we iterate through the free parameters
A, h, b, and k to be the closest numerical approximation to the
simulated theoretically optimal deformation. Figure 3f shows a
deformed auxetic lattice of the optimal design with the waveform
function in Equation (1) using calculated variables A, h, b, and k
to graph the 11 red lines coinciding with the unit cell centers.
The function in Equation (1) is compared with the randomized
x-displacements for each unit cell to calculate mean absolute
error (MAE). The machine learning model uses the calculated
MAE, as described by Equation (2) between the optimal design
x-displacement, by, and randomized design x-displacement
results, y, as the machine learning labels. Only x-displacement
arrays are used in training the machine learning model to study
the capabilities of a basic one-output model in a system that oth-
erwise could perform as a more complex multioutput model. The
resulting MAE labels of the machine learning model are paired
with the respective 11� 11 randomized image for creating sam-
ple sets. Figure 3g shows the machine learning workflow for
CNN as well as the complete design iteration process for a
data-driven control model. Using TensorFlow with a Keras deep
learning backend, a regressive neural network is formed using a
16-layer filter size with four convolutions and one fully stacked
dense layer. After completing the training of the machine learn-
ing model on 4500 pseudorandomized images, we predict the
auxetic architecture’s capability to adhere to the mid-section of
NPR deformation function. The cross-validation set consists of
500 samples.

by ¼ A sin
�ðx � hÞ

b

�
þ k (1)

MAE ¼ 1
n

X
jy � byj (2)

After exploring the design space, the diversity of auxetic qual-
ity causes an array of design choices that behave within a range of
error to the optimal function value. The primary application
achieved in the study is the prediction of expansion behavior with
regression using distributed auxetic and nonauxetic unit cells.
The regression estimation values chart in Figure 4a produces
an R2 value of 0.91, which suggests convergence and implies that
a higher accuracy can be achieved with more high-quality train-
ing samples. The results displayed in the MAE histogram from
Figure 4b are used to calculate the values for the mean squared
error of 0.00057, which demonstrates a relatively low error value
in machine learning validation. The trained model for this study
predicts the deviation of the expansion behavior relative to the
optimal design with a mean average percent error of 4.2%.
The trained model predicts a potential design image using sam-
ples from the validation set in Figure 4c and its solution in
Figure 4e with the actual value of 0.23 cm MAE and a predicted
value of 0.27 cm (percent error¼ 17.39%). Alternatively, an
undesirable design image is predicted in Figure 4d where its
deformation in Figure 4f shows the sample measured at
0.66 cm MAE and predicted at 0.60 cm (percent error¼ 9.09%).
These predictions are at a higher mean average percent error
margin than that of the moderate error cases because the model

is trained on a larger number of random albeit evenly distributed
auxetic quality samples. In the future, applying a suite of math-
ematical functions for generating training images instead of the
pseudorandomized approach is likely to aid in determining
favorable engineering design images. These results show that
a basic machine learning model with a single-feature image
input and single-value output can be expanded in the future
using different configurations of unit cells, optimized design
functions, 2D metamaterial shapes, and feature selection. We
also plan to use more advanced FEA models by setting the elastic
modulus of the simulated material to be a function of strain
according to the respective material used and degree of strain.

Using previously deformed metamaterial data with the imple-
mentation of a new mathematical function expedites the design
time of auxetic distribution in a material for a specified design
behavior. This machine learning method offers design combina-
tions that are not intuitive compared with the theoretically opti-
mum configuration. Previous literature focuses on traditional
topology optimization and advanced mechanics to guide design;
however, this study reveals some aspects of feature selection
using computational data streams to design for 2D and conse-
quently, 3D deformation. Using the prediction from the machine
learning model, a design was selected at a low predicted MAE
value relative to the function and displayed a design representa-
tive of the intended expansion. Another important aspect of this
study is drawing on the core principles of engineering and the
practicality of using common commercial materials and open-
source repositories. Designing a material with specific deforma-
tion characteristics requires design time, mechanics of materials
expertise, and iterative techniques with traditional topology opti-
mization. A researcher may only need to specify the formulaic
behavior of the material for this machine learning portion to
develop favorable arrangements, in essence, programming mate-
rial deformation. At scale, this approach is not intended to dis-
place analytically derived solutions but supplement design time
in complex engineering applications and possible design combi-
nations in soft-bodied actuation. The soft robotics implications of
this study confirm a pneumatic approach for the axial and angu-
lar displacement of a soft-body structure with an auxetic skin.
Deformable soft-body entities can be used in biomedical and
human interactive technologies with more comprehensive stud-
ies of high-performance architected elastomers. The goal for
future applications entails testing 3D deployable geometries
and robotic gripping tools, using both auxetics as the mecha-
nisms for differential expansion and machine learning for their
control systems or design selection.

Experimental Section
Programming the meshing software consisted of two primary open-

source Python packages Pygmsh[43] and SolidsPy.[44] Pygmsh generated
a finely meshed surface for an accurate physical representation.
SolidsPy was used as the FEA tool to determine the deformation and strain
of the structure by imparting a force on the top beam as well as constrain-
ing it to move in the y-direction and fixing the bottom beam. The array
created a 22 cm 22 cm metamaterial lattice in the computational space
with an average truss width of 0.025 and 3 cm solid support beams on
the top and bottom of the sample. The Python packages are continually
being updated and, in the future, will likely be more resilient to complex
geometries for testing parameters. We created a Mathematica script to

www.advancedsciencenews.com www.aem-journal.com

Adv. Eng. Mater. 2020, 1901266 1901266 (5 of 7) © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

http://www.advancedsciencenews.com
http://www.aem-journal.com


generate the images with built-in random radial functions. A Python
application programming interface-accessed Mathematica toolkits and
algorithms to produce a set of semirandomized images using radial trac-
ing were generated and then resized using OpenCV. The fused deposition
modeling printer used for the empirical samples was a Prusa i3 MK3. The
rectangular prism of the 2D sample was additively manufactured with
dimensions 11 cm� 14 cm� 0.25 cm, an average truss width of
0.0125, and 1.5 cm solid beams on the top and bottom. Empirical testing
was one-half of the dimensionality of the 2D computational design to fit
the testing apparatus. The dimensions of the cylindrical prism were 3 cm
diameter� 14 cm height and the bellows extruded 0.3 cm from the surface
with a wall thickness of 0.08 cm. The tensile testing system used was a
Tenson Universal Testing Machine at a vertical strain of εy¼ 0.3 for
the experimental samples. A Gaussian filter was applied to the asymmet-
rical Rorschach image generation function from Mathematica. This
was to create a more gradual transition from a purely auxetic cell to a non-
auxetic cell. The equation for this blurring is given below, Equation (3),
with σ¼ 10.

Gðx, yÞ ¼ 1
2πσ2

e�ðx2þy2Þ=ð2σ2Þ (3)
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