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Stress-strain curves are an important representation of amaterial's mechanical properties, fromwhich important
properties such as elastic modulus, strength, and toughness, are defined. However, generating stress-strain
curves from numerical methods such as finite element method (FEM) is computationally intensive, especially
when considering the entire failure path for amaterial. As a result, it is difficult to perform high throughput com-
putational design of materials with large design spaces, especially when considering mechanical responses be-
yond the elastic limit. In this work, a combination of principal component analysis (PCA) and convolutional
neural networks (CNN) are used to predict the entire stress-strain behavior of binary composites evaluated
over the entire failure path, motivated by the significantly faster inference speed of empirical models. We
show that PCA transforms the stress-strain curves into an effective latent space by visualizing the eigenbasis of
PCA. Despite having a dataset of only 10-27% of possible microstructure configurations, the mean absolute error
of the prediction is b10% of the range of values in the dataset, when measuringmodel performance based on de-
rived material descriptors, such as modulus, strength, and toughness. Our study demonstrates the potential to
use machine learning to accelerate material design, characterization, and optimization.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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1. Introduction

Understanding the relationship between structure and property for
materials is a seminal problem in material science, with significant ap-
plications for designing next-generation materials. A primary motivat-
ing example is designing composite microstructures for load-bearing
applications, as composites offer advantageously high specific strength
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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and specific toughness. Recent advancements in additive manufactur-
ing have facilitated the fabrication of complex composite structures,
and as a result, a variety of complex designs have been fabricated and
tested via 3D-printing methods [1–10]. While more advanced
manufacturing techniques are opening upunprecedented opportunities
for advanced materials and novel functionalities, identifying micro-
structures with desirable properties is a difficult optimization problem.

One method of identifying optimal composite designs is by con-
structing analytical theories. For conventional particulate/fiber-
reinforced composites, a variety of homogenization theories have
been developed to predict the mechanical properties of composites as
a function of volume fraction, aspect ratio, and orientation distribution
of reinforcements [2,11,12]. Because many natural composites, synthe-
sized via self-assembly processes, have relatively periodic and regular
structures, their mechanical properties can be predicted if the load
transfer mechanism of a representative unit cell and the role of the
self-similar hierarchical structure are understood [13]. However, the ap-
plicability of analytical theories is limited in quantitatively predicting
composite properties beyond the elastic limit in the presence of defects,
because such theories rely on the concept of representative volume el-
ement (RVE), a statistical representation of material properties,
whereas the strength and failure is determined by the weakest defect
in the entire sample domain. Numerical modeling based on finite
Fig. 1. Workflow of modeling process. To preprocess stress-strain curves, we convert them to
learned model to compress both the training and test set. Our CNN model takes as input th
function weighted by the explained variance ratio of each component. Finally, the CNN m
transformed back into regular stress-strain curves. To analyze our results, we compare the pre
actual stress-strain curves.
element methods (FEM) can complement analytical methods for
predicting inelastic properties such as strength and toughness modulus
(referred to as toughness, hereafter) which can only be obtained from
full stress-strain curves.

However, numerical schemes capable of modeling the initiation and
propagation of the curvilinear cracks, such as the crack phase field
model, are computationally expensive and time-consuming because a
very fine mesh is required to accommodate highly concentrated stress
field near crack tip and the rapid variation of damage parameter near
diffusive crack surface [14–21]. Meanwhile, analytical models require
significant human effort and domain expertise and fail to generalize to
similar domain problems. In order to identify high-performing compos-
ites in the midst of large design spaces within realistic time-frames, we
need models that can rapidly describe the mechanical properties of
complex systems and be generalized easily to analogous systems. Ma-
chine learning offers the benefit of extremely fast inference times and
requires only training data to learn relationships between inputs and
outputs e.g., composite microstructures and their mechanical proper-
ties. Machine learning has already been applied to speed up the optimi-
zation of several different physical systems, including graphene
kirigami cuts [22], fine-tuning spin qubit parameters [23], and probe
microscopy tuning [24]. Such models do not require significant human
intervention or knowledge, learn relationships efficiently relative to
PCA-coordinate representations, fitting a PCA model to the training set and applying the
e composite design and makes predictions in the PCA-coordinate space, with the loss
akes predictions about composite designs it hasn't seen. These PCA predictions are
dicted material descriptors compared to the actual ones, derived from the predicted and



Fig. 2. Schematic of two-dimensional crack topology: (a) sharp crack model and (b) diffusive crack model described by phase field d(x).
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the input design space, and can be generalized to different systems
[25–34].

In this paper, we utilize a combination of principal component
analysis (PCA) and convolutional neural networks (CNN) to predict
the entire stress-strain curve of composite failures beyond the elastic
limit. Stress-strain curves are chosen as the model's target because
they are difficult to predict given their high dimensionality. In addi-
tion, stress-strain curves are used to derive important material de-
scriptors such as modulus, strength, and toughness. In this sense,
predicting stress-strain curves is a more general description of
composites properties than any combination of scaler material
Fig. 3. (a) Geometry and boundary condition for single-edge notched specimen and (b) its m
displacement curves under tension and (d) crack patterns obtained from anisotropic and hybr
descriptors. A dataset of 100,000 different composite microstruc-
tures and their corresponding stress-strain curves are used to train
and evaluate model performance. Due to the high dimensionality of
the stress-strain dataset, several dimensionality reduction methods
are used, including PCA, featuring a blend of domain understanding
and traditional machine learning, to simplify the problem without
loss of generality for the model.

We will first describe our modeling methodology and the parame-
ters of our finite-element method (FEM) used to generate data. Visual-
izations of the learned PCA latent space are then presented, along with
model performance results.
icrostructure composed of two different materials with high stiffness ratio. (c) Force-
id formulations [15].



Fig. 4. (a) An example of composite plate and boundary conditions to test to the
composites in this paper. Each composite plate is composed of 121 square blocks. ‘E, ν,
Gc’ represent elastic modulus, Poisson's ratio and energy release rate, respectively
(b) Totally fractured state based on crack phase field model. (c) Stress-strain curve and
the graphical definitions of elastic modulus, strength and toughness.

4 C. Yang et al. / Materials and Design 189 (2020) 108509
2. Method

2.1. Modeling stress-strain curves with PCA

We represent all the stress-strain curves as arrays of stress values
evaluated at 61 strain points (referred to as stress vector, hereafter),
and reduce the dimensionality of the stress vector by employing PCA,
a linearmethod that identifies anorthonormal basis alongwhich to pro-
ject the data in a lower dimension. PCA is only fit on training data tofind
the orthonormal basis, which is defined by principal component
vectors. Using this basis, both the training data and test data are trans-
formed by projecting the stress vector into the lower dimensional latent
space and finding a new set of coordinates to define the stress vectors.

~X ¼ X− μ! ð1Þ

~X ¼ UΣVT ð2Þ

The 100,000 × 61 stress matrix is denoted as the X matrix, where
each row represents a stress-strain curve and each column a stress
value at a given strain value. Even though stress-strain curves are com-
posed of a stress and a strain vector, only the stress vector is passed to
PCA, because the strain vector across all composite blocks had the
same values and lengths. Using the strain vector would have added no
extra information to the model because it is constant for all inputs.
This allows us to significantly reduce the dimensionality of the output,
making it easier for the model to make predictions. The stress matrix
is first mean-centered by column as shown in Eq. (1), so that each col-
umn has a mean of 0. PCA utilizes singular value decomposition
(SVD), shown in Eq. (2), which is a real matrix factorization method.
The ΣTΣ matrix contains the eigenvalues that determine the variance
explained in each principal component while the VT matrix contains
the principal components in order of decreasing variance explained.
The first 15 principal components were chosen to be kept and the rest
discarded. This is done by projecting the data along the first 15 principal
components in VT to obtain a 15-dimensional representation of the
stress-strain curve. The cumulative explained variance (C.E.V.) is the
sumof thefirst 15 eigenvalues normalized by the sumof all eigenvalues,
shown in Eq. (3). By using dimensionality reduction, our CNN model is
able to learn more efficiently because it is learning in a lower dimen-
sional space, so that we can obtain higher accuracy with less training
data.

C:E:V : n ¼ 15ð Þ ¼

X
i¼1

nλi

P
j¼1

61 λ j ð3Þ

2.2. Creating a customized loss function for CNN

Each eigenvalue represents the explained variance of the associated
principal component basis-vector. In order to communicate to our CNN
that some principal components were more important than others, we
constructed a customized loss function that weighted errors in each
principal component by the associated eigenvalue i.e., principal compo-
nents that have larger explained variance were weighted more heavily
in the loss function that those with less explained variances. In Eq. (4),
we show the standard mean squared error loss function compared to
the PCA weighted loss function we devised, as shown in Eq. (5).

MSE ¼
Xn
i¼1

X15
j¼1

yi j½ �−byi j½ �� �2 ð4Þ
Weighted MSE ¼
Xn
i¼1

X15
j¼1

λ jP61
k¼1 λk

yi j½ �−byi j½ �� �2 ð5Þ

To give intuition regarding the formulation of this customized loss
function, recall that the CNN now outputs a 15-dimensional vector as
a prediction. However, each component in this 15-dimensional vector
corresponds to a particular principal component coordinate, which
has a corresponding eigenvalue denoting its importance. Our custom-
ized loss function in Eq. (5) uses the explained variance ratio of each
component in the loss function to ‘teach’ themodel that certain compo-
nents matter more than others, whereas the naïve mean squared error
loss function in Eq. (4) treats each component equally. A flow diagram
of the data processing, model training, and error analysis is shown in
Fig. 1.

2.3. CNN implementation and training

A convolutional neural network was trained to predict this lower di-
mensional representation of the stress vector. The input to the CNNwas
a binarymatrix representing the composite design,with 0's correspond-
ing to soft blocks and 1's corresponding to stiff blocks. PCA was imple-
mented with the open-source Python package scikit-learn [35], using
the default hyperparameters. CNN was implemented using Keras [36]
with a TensorFlow backend. The batch size for all experiments was set
to 16 and the number of epochs to 30; the Adam optimizer was used
to update the CNN weights during backpropagation [37].

A train/test split ratio of 95:5 is used –we justify using a smaller ratio
than the standard 80:20 because of a relatively large dataset. With a
ratio of 95:5 and a dataset with 100,000 instances, the test set size still
has enough data points, roughly several thousands, for its results to gen-
eralize. Each column of the target PCA-representation was normalized
to have a mean of 0 and a standard deviation of 1 to prevent instable
training.
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2.4. Finite element method data generation

FEMwasused to generate training data for the CNNmodel. Although
initially obtained training data is compute-intensive, it takes much less
time to train the CNN model and even less time to make high-
throughput inferences over thousands of new, randomly generated
composites. The crack phase field solver was based on the hybrid for-
mulation for the quasi-static fracture of elastic solids and implemented
in the commercial FEM software ABAQUS with a user-element subrou-
tine (UEL).
Fig. 5. (a) Scatterplots of stress-strain curves represented in the 3D latent space defined by the
The color scale represents the associated modulus value of each stress-strain curve. The plot i
variance ratio with respect to number of dimensions. (c) Comparing the distribution of value
stress-strain predictions for modulus, strength, and toughness.
The crack phase field model is a variational approach where the
crack discontinuity is approximated as a continuous scalar field called
crack phasefield d(x). The two differentmodels for crack discontinuities
are shown in Fig. 2 [18–20]. The phase parameter has a diffusive nature
with a regularization parameter, lc, and the diffusive crack converges to
the original sharp crack in the limit as lc→ 0. Crack phase fieldmodeling
allows one to simulate complex crack evolution such as curvilinear
crack path, crack branching or coalescence. Also, unlike XFEM (ex-
tended-FEM)which requires predefined crack initiation site or path, en-
tire fracture process involving crack nucleation and propagation can be
first 3 principal component vectors in PCA, which contain ~85% of the variance in the data.
s viewed from different azimuthal angles. (b) Scree plot of PCA i.e., cumulative explained
s learned based on ranking the values as derived from the convolutional neural network



Table 1
Using a convolutional neural network and 15-dimensional PCA reduction,we evaluate the performance of ourmodel over 15 trials with a 95:5 train test split.Wemeasure performance of
CNN at predicting stress-strain curves by the error between the actual and predictedmaterial descriptor values (modulus, strength, and toughness) derived from stress-strain curves. 95%
confidence intervals are included alongside with average values. Statistical descriptors about the distribution of values taken on by material descriptors are provided for context.

Mean absolute error Mean squared error R2 Max Min Range Average

Modulus (MPa) 18.3 ± 6.16 533 ± 328 0.888 ± 0.0652 566.04 72.96 493.08 225.85
Strength (kPa) 1.66 ± 0.479 4.69 ± 2.61 0.918 ± 0.0455 71.67 17.22 54.45 31.16
Toughness (mJ/m2) 1.04 ± 0.106 1.86 ± 0.230 0.763 ± 0.0261 24.79 7.40 17.39 13.07
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modeled based on a single criterion involving the critical energy release
rate.

While there are several methods to formulate the crack phase field
model, we employed the hybrid formulation [14] which has been re-
ported to be adequate for modeling the fracture of composite materials
[15]. In the hybrid formulation, the key idea is to couple the crack phase
field d(x) with the displacement field u(x) via the degradation of strain
energy density ψ as shown in Eq. (6),

ψ ϵ uð Þ;dð ÞÞ ¼ 1−dð Þ2 ψ0
þ ϵð Þ þ ψ0

− ϵð Þ ð6Þ

where ϵ,ψ0
þ, andψ0

− refer to strain tensor, tensile part of strain energy
Fig. 6.A randomly chosen set of 9 predicted stress-strain curves compared to the actual stress-st
the test set, have mean squared errors in the 25–75% of the mean squared error distribution fo
density and compressive part of strain energy density obtained without
considering d(x), respectively. Eq. (7) shows howwe can link the crack
phase field d(x) with the stress field σ(x) via the degradation of elastic
stiffness,

σ u;dð Þ ¼ 1−dð Þ2 þ k
h iσ0 ¼ 1−dð Þ2 þ k

h i
C0ϵ

¼ 1−dð Þ2 þ k
h i∂ψ0 ϵð Þ

∂ϵ ð7Þ

where σ refers to stress tensor accounting for d(x) while σ0 and C0 re-
fers to stress tensor and stiffness tensor without considering d(x). k is
a very small dummy constant which is inserted to ensure numerical
rain curvewith the associated composite included. These examples, which are drawn from
r the test set, providing a representative sample of examples.
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convergence. The load bearing capacity disappears when d goes to zero.
Since the stiffness degradation equation indicates zero load bearing ca-
pacity under any loading condition, an additional constraint is necessary
to prevent crack face inter-penetration under compression, as in

∀x : if ψ0
þbψ0

−→d ¼ 0 ð8Þ

The crack phase field is updated via the critical energy release rate
criterion:

d−l2Δd ¼ 2l
gc

1−dð ÞHþ in Ω

∇d∙n ¼ 0 on Γ; ∂Ω

where irreversibility condition is ensured by history variable Hþ ¼ max
τ∈½0;t�

ψþ
0 ðϵðx; τÞÞ (i.e. crack healing is prohibited).
The critical advantage of hybrid formulation over the widely used

anisotropic formulation [18] lies in the appropriate description of the
stiffness degradation. The stiffness degradation in the anisotropic for-
mulation is given by the following:

σ u;dð Þ ¼ 1−dð Þ2 þ k
h i∂ψþ

0 ϵð Þ
∂ϵ þ ∂ψ−

0 ϵð Þ
∂ϵ ð10Þ

This stiffness degradation scheme, which exclusively considers the
tensile part of the strain energy density, leads to spurious load bearing
capacity upon combined tensile and shear loading near the crack tip.
As shown in Fig. 3, the anisotropic formulation predicts spurious crack
growth andunphysical load-displacement response after complete frac-
ture, while the hybrid formulation offers reasonable fracture pattern
and load-displacement curve. Because full stress-strain responses of
composites are considered, the hybrid formulation is chosen in the pres-
ent study.

FEM simulations are performedwith 2Dplane stress conditionswith
CPS4 element of a large plate divided into 121 blocks, with 70 stiff and
51 soft blocks randomly assigned to 121 sites in the composite unit
cell, resulting in N1034 distinct configurations. Stress-strain curves of
100,000 composite configurations are obtained until the complete frac-
ture with strain increment of 0.0000227 while the interface between
stiff and soft blocks is assumed to be perfectly bonded. Each block was
divided into 144 elements (12 by 12) and the regularization parameter,
i.e. characteristic diffusive length of the crack, is set to be twice the
length of each element. All configurations fail completely at the maxi-
mum strain of 0.00136. Hence, each stress-strain curve can be repre-
sented as an array of 61 stress values. See Fig. 4 for a description of the
FEM model inputs and outputs.

3. Results and discussion

3.1. Visualizing PCA

In order to better understand the role PCAplays in effectively captur-
ing the information contained in stress-strain curves, the principal com-
ponent representation of stress-strain curves is plotted in 3 dimensions.
Specifically, we take the first three principal components, which have a
cumulative explained variance ~85%, and plot stress-strain curves in
that basis in Fig. 5a and provide several different angles from which to
view the 3D plot. Each point represents a stress-strain curve in the
PCA latent space and is colored based on the associated modulus
value. Based on Fig. 5a, it seems that the PCA is able to spread out the
curves in the latent space based on modulus values, which suggests
that this is a useful latent space for CNN to make predictions in.

The cumulative explained variance ratio with respect to the number
of dimensions is shown in Fig. 5b. As shown in the figure we are able to
capture N99.5% of the variance in the stress-strain curves, a factor of 4
reduction in dimensionality with negligible loss in quality of informa-
tion given to the model by using only 15 principal components. While
it is difficult to visualize stress-strain curves as 61-dimensional
vectors, we can intuitively understand why PCA is able to find a linear
lower dimensional representation based on our understanding of
stress-strain curves. Because these curves have a linear portion i.e. elas-
tic deformation, followed by fracture and crack propagation, they have
generally similar.

3.2. CNN model design and performance

Our CNNwas a fully convolutional neural network i.e. the only dense
layer was the output layer. All convolution layers used 16 filters with a
stride of 1, with a LeakyReLU activation followed by
BatchNormalization. The first 3 Conv blocks did not have 2D
MaxPooling, followed by 9 conv blockswhich did have a 2DMaxPooling
layer, placed after the BatchNormalization layer. A
GlobalAveragePooling was used to reduce the dimensionality of the
output tensor from the sequential convolution blocks and the final out-
put layer was a Dense layer with 15 nodes, where each node
corresponded to a principal component. In total, our model had
26,319 trainable weights.

Our architecturewasmotivated by the recent development and con-
vergence onto fully-convolutional architectures for traditional com-
puter vision applications, where convolutions are empirically observed
to be more efficient and stable for learning as opposed to dense layers.
In addition, in our previous work, we had shown that CNN's were a ca-
pable architecture for learning to predict mechanical properties of 2D
composites [30]. The convolution operation is an intuitively good fit
for predicting crack propagation because it is a local operation, allowing
it to implicitly featurize and learn the local spatial effects of crack
propagation.

After applying PCA transformation to reduce the dimensionality of
the target variable, CNN is used to predict the PCA representation of
the stress-strain curve of a given binary composite design. After training
the CNN on a training set, its ability to generalize to composite designs it
has not seen is evaluated by comparing its predictions on an unseen test
set. However, a natural question that emerges is how to evaluate a
model's performance at predicting stress-strain curves in a real-world
engineering context. While simple scaler metrics such as mean squared
error (MSE) and mean absolute error (MAE) generalize easily to vector
targets, it is not clear how to interpret these aggregate summaries of
performance. It is difficult to use such metrics to ask questions such as
“Is this model good enough to use in the real world” and “On average,
how poorly will a given prediction be incorrect relative to some given
specification”. Although being able to predict stress-strain curves is an
important application of FEM and a highly desirable property for any
machine learning model to learn, it does not easily lend itself to inter-
pretation. Specifically, there is no simple quantitative way to define
whether two stress-strain curves are “close” or “similar” with real-
world units.

Given that stress-strain curves are oftentimes intermediary repre-
sentations of a composite property that are used to derive more mean-
ingful descriptors such asmodulus, strength, and toughness,we decided
to evaluate the model in an analogous fashion. The CNN prediction in
the PCA latent space representation is transformed back to a stress-
strain curve using PCA, and used to derive the predicted modulus,
strength, and toughness of the composite. The predicted material de-
scriptors are then compared with the actual material descriptors. In
this way, MSE andMAE now have clearly interpretable units andmean-
ings. The average performance of the model with respect to the error
between the actual and predicted material descriptor values derived
from stress-strain curves are presented in Table 1. TheMAE for material
descriptors provides an easily interpretable metric of model perfor-
mance and can easily be used in any design specification to provide con-
fidence estimates of a model prediction. When comparing the mean
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absolute error (MAE) to the range of values taken on by the distribution
of material descriptors, we can see that theMAE is relatively small com-
pared to the range. The MAE compared to the range is b10% for all ma-
terial descriptors. Relatively tight confidence intervals on the error
indicate that this model architecture is stable, the model performance
is not heavily dependent on initialization, and that our results are robust
to different train-test splits of the data.

Ranking plots are shown in Fig. 5c and demonstrate that the CNN
can accurately learn the underlying distribution of values. A
sample of predicted versus actual stress-strain curves are provided
in Fig. 6. Despite complex non-smooth behaviors exhibited in
stress-strain curves, the CNN is able to approximate the non-linear
portions of the stress-strain curves well despite only using linear di-
mensionality reduction, which speaks to the learning ability of CNN
to learn complex behaviors just from the microstructure. In addition,
our CNN's ability to predict modulus, strength, and toughness values
derived from stress-strain curves is significantly improved over our
previous work [30], which directly predicted the scaler material
properties from the composite design.

3.3. Future work

Future work includes combining empirical models with optimi-
zation algorithms, such as gradient-based methods, to identify com-
posite designs that yield complementary mechanical properties. The
ability of a trained empirical model tomake high-throughput predic-
tions over designs it has never seen before allows for large parameter
space optimization that would be computationally infeasible for
FEM. In addition, we plan to explore different visualizations of em-
pirical models in an effort to “open up the black-box” of such models.
Applying machine learning to finite-element methods is a rapidly
growing field with the potential to discover novel next-generation
materials tailored for a variety of applications. We also note
that the proposed method can be readily applied to predict other
physical properties represented in a similar vectorized format, such
as electron/phonon density of states, and sound/light absorption
spectrum.

4. Conclusion

In conclusion, we applied PCA and CNN to rapidly and accurately
predict the stress-strain curves of composites beyond the
elastic limit. In doing so, several novel methodological approaches
were developed, including using the derived material descriptors
from the stress-strain curves as interpretable metrics for model per-
formance and dimensionality reduction techniques to stress-strain
curves. This method has the potential to enable composite design
with respect to mechanical response beyond the elastic limit,
which was previously computationally infeasible, and can generalize
easily to related problems outside of microstructural design for en-
hancing mechanical properties.
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