
COMMUNICATION
www.advtheorysimul.com

Finite-Element-Based Deep-Learning Model for Deformation
Behavior of Digital Materials

Zhizhou Zhang and Grace X. Gu*

Smart composite materials fabricated through 4D-printing methods are
attracting enormous research attention for their ability to respond (typically
deform) under external stimuli. The design process for such smart materials
requires iterations of finite-element simulations that are computationally
expensive. Recently, researchers have tried replacing numerical simulations
with machine learning (ML) models to predict the output at a much higher
speed. However, there exist very few studies that explore the model
algorithm’s expressive capacity and analyze the physical interpretation based
on the problem. This paper focuses on using ML to predict the nonlinear
deformation behavior of digital materials. Various problem construction
approaches and model performance are compared and discussed. It is shown
that clustering the materials helps improve the generalization of training and
models that treat material features as an array of numbers still face difficulties
to provide accurate predictions. Inspired by modern computer vision
technologies, convolutional kernels outperform other methods by recognizing
the material distribution patterns. The performance is further enhanced after
reconstructing the regression problem into classification. Moreover, high-level
material design information can be extracted from the model through a
sensitivity analysis. This framework may greatly improve the response
prediction and design process for 4D-printed smart materials.

The advancement of additive manufacturing (also known as 3D-
printing) allows the fabrication of structureswith complex shapes
and material distribution.[1] Consequently, 4D-printing emerged
as a novel research field where smart materials that can respond
to external stimuli are designed and 3D-printed.[2] Different from
typical composites (fibers, laminates), thematerial distribution of
4D-printed products cannot be easily parameterized. Thus, the
concept of digital materials was introduced to treat composites
as assemblies of material pixels.[3] On the other hand, digital ma-
terials increase the design parameters by orders of magnitude
which greatly complicates the design space of composites, es-
pecially when conducting massive amounts of experiments and
compensating for their noise can be costly and time consuming.

Z. Zhang, Prof. G. X. Gu
Department of Mechanical Engineering
University of California
Berkeley, CA 94720-1740, USA
E-mail: ggu@berkeley.edu

The ORCID identification number(s) for the author(s) of this article
can be found under https://doi.org/10.1002/adts.202000031

DOI: 10.1002/adts.202000031

To more efficiently explore the design
space, the finite element method (FEM)
has been widely applied to simulate the
mechanical response of digital materials
with a good match to the physical world.[4]

However, one critical drawback of FEM is
its huge computation cost. A typical FEM
solver requires the inversion of the assem-
bled stiffness matrix whose time complex-
ity grows at least quadratically (can be cu-
bically depending on the condition num-
ber) in the number of nodes in the mesh.
Recently, researchers are applying machine
learning (ML) to compress and acceler-
ate various FEM simulation processes.[5]

These surrogate models realize real-time
fast prediction, analytical feature gradient,
and high-level interpretation (shown later
in this work) which typical optimization
methods cannot acquire.[6] However, there
exist very few studies that rationalize the
model selection and problem construction
based on the material features and the de-
sired prediction. These steps can greatly af-
fect the performance of ML. Moreover, this
paper will demonstrate the sensitivity analy-
sis through which one can obtain high-level

knowledge. This approach is widely applicable to digitalmaterials
work that requires numerical predictions.
The focus of this work is to develop ML surrogate models to

match the numerical simulation 4D-printed digital materials and
specifically, materials that swell as their active pixels. Active ma-
terials include hydrogels, shape memory polymers, and silicon
elastomers, which can deform drastically under external mois-
ture or heat.[7] Such digital materials possess high nonlinearity
due to the vast difference between its constituents’ modulus and
swelling response. The target geometry is chosen to be a curved
beam that can achieve large deformation (Figure 1a), yet simple
enough for human design intuition to help validate the high-level
information extracted from ML models. We want to make a note
here that the methods introduced by this paper are not restricted
to the beam geometry and can be applied to any digital materials.
More details about the problem setups are discussed in the Ex-
perimental Section. This work aims to utilize the power of ML to
accelerate the deformation prediction of digital materials. The in-
puts will be the encoded material distribution (an array of 1s and
−1s) as illustrated in Figure 1a and the outputs will be the co-
ordinates of the eight highlighted nodes after deformation. The
paper will compare the performance of different ML models and

Adv. Theory Simul. 2020, 3, 2000031 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000031 (1 of 8)

http://crossmark.crossref.org/dialog/?doi=10.1002%2Fadts.202000031&domain=pdf&date_stamp=2020-05-17

www.advancedsciencenews.com www.advtheorysimul.com

Figure 1. a) The initial state and the simulated deformation from two randommaterial distributions. The geometry is fixed on its left tip and will deform
once activated. Bluemeshes represent the activematerials and white meshes represent the passivematerials. The 16 coordinates of the eight highlighted
red nodes will be the prediction output of the ML algorithm. b) A sample feature compression process. Instead of storing the material of each element,
the distribution is clustered. The active material elements on each of the mesh layers are clustered into one group. In each layer, the elements are indexed
sequentially. Then, the count of active material elements, their mean index location, and variance of index location within each cluster is recorded as the
compressed features.

analyze their compatibility with an FEM problem, and discuss
approaches to extract high-level understanding from ML mod-
els. Moreover, we want to emphasize the importance of problem
construction which may be more crucial than a good model. In
the following parts of the paper, root mean square error (RMSE)
is used to evaluate the ML models. For this deformation predic-
tion problem, RMSE physically represents the distance between
the predicted nodal coordinate from theMLmodel and the simu-
lated ground truth coordinate. The loss function has two alterna-

tives: the average loss 1
8

8∑
n = 1

√
(y1n − ŷ1n)

2
+ (y2n − ŷ2n)

2
which

measures the average RMSE over the eight highlighted nodes as

in Figure 1a or the right tip loss
√
(y18 − ŷ18)

2
+ (y28 − ŷ28)

2
that

only measures the RMSE at node 8 (node 8 is of special inter-
est for its largest displacement variation over all the eight nodes).
y1n and y2n are the predicted horizontal and vertical coordinates
of the node n and ŷ1n and ŷ2n are the corresponding ground truth
labels. All ML models are trained on the average loss except for
the convolutional neural network (CNN) classification model.
The k-nearest neighbors algorithm (KNN) is first attempted as

a baseline for the subsequent work. For KNN, the training pro-
cess is just storing all the training data. A prediction is calculated
as a weighted sum of the labels of the top k training data with
the most similar input features to the test point. The weights
for labels are calculated as the normalized inverse distance from
each of the k training points to the test point. Figure 2a shows the
average validation loss at different k values where k = 5 gives the
best average validation loss of 7.7 mm based on the compressed

12 feature inputs and 8 mm based on the raw 100 feature inputs.
The loss at node 8 is approximately twice the average loss over
the 8 nodes which is around 1.6–1.7 cm. Considering the over-
all size of the geometry (less than 8 cm in y1 direction) and the
range of node 8 displacement (less than 8 cm), the result from
KNN is insignificant. This outcome is not surprising when a lazy
algorithm like KNN is applied which normally requires a dense
training set for good performance. Nevertheless, this validation
loss of 7.7 mm still offers a preliminary starting line for the eval-
uation of more complex models.
Linear regression serves as the most widely applied data learn-

ing algorithm for its efficient closed-form training process yet
moderate expressive power. Due to the nonlinearity of the dis-
placement response of the digital material, quadratic k(xi, xj) =
(1 + a(x1 ⋅ x2))

2 and radial basis function (RBF) kernels k (xi, xj) =
exp(−b‖xi − xj‖2) are applied to increase the complexity of a lin-
earmodel. Given themean square error cost function, the closed-
form prediction for a test point z from the ordinary least square
(OLS) linear regression is given as z(XTX + 𝜆I)−1XTY , and the
closed-form prediction from kernelized linear regression is given
as [k(x1, z)… k(xn, z)](K + 𝜆I)−1Y where xis are the training data,
X is a matrix with the training data stacked in rows, Y is a matrix
with the training labels stacked in rows, I is the identity matrix,
and K is the gram matrix whose (i, j)th entry is equal to k(xi, xj).
The weight penalty 𝜆 is set to 0.01, quadratic kernel constant a is
set to be 1/900, and the RBF kernel constant b is set to 0.00065
for the compressed 12 feature inputs. These hyperparameters are
tuned according to the average validation loss on the 1000 mini
data batch.

Adv. Theory Simul. 2020, 3, 2000031 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000031 (2 of 8)

www.advancedsciencenews.com www.advtheorysimul.com

Figure 2. a) Average validation loss for KNN at different k values. b) Validation results of linear regression. The point cloud plot compares the ground
truth (black) coordinate of node 8 with the validation results from ordinary least square (red), quadratic kernel (green), and Gaussian kernel (blue) linear
regression. The average validation loss are 6.2, 5.6, and 5.7 mm for the three linear regressionmodels. Three groups of predictions are selected randomly
from the validation set with all the eight predicted nodal coordinates plotted on the right. c) The bar plot shows the validation data distribution from the
quadratic kernel. Node 8 loss (12 mm) is more than twice of the average validation loss (5.6 mm).

The validation results of node 8 displacement from OLS,
quadratic kernel, and RBF kernel linear regressions on the com-
pressed features are shown in Figure 2b. To better visualize the
predictions, three validation points are picked from the dataset
with the predictions of all the eight nodes plotted on the right.
The average validation loss over the 10 000 standard dataset of

the three linear regression models (OLS, quadratic kernel, RBF
kernel) are 6.2, 5.6, and 5.7 mm which are much improved upon
the KNN results. The same training process is also tested on the
100 raw features which achieves the average validation loss of 6.3,
6.2, and 6.2 mm. Therefore, we can safely conclude that given a
sparse dataset, feature compression through material clustering

Adv. Theory Simul. 2020, 3, 2000031 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000031 (3 of 8)

www.advancedsciencenews.com www.advtheorysimul.com

does help improve the generalization of the ML algorithms
through blurring the details of the features. However, the result
from quadratic kernelized regression cannot be considered ac-
curate since more than half of the validation data have node 8
distance loss of at least 10 mm as seen in Figure 2c. There are
three potential reasons for the low accuracy from linear regres-
sion models. First, there are not enough data points to fully uti-
lize the model’s expressive power. Second, the complexity of the
model needs to be enhanced. Or lastly, the problem is not well
constructed. However, linear regression’s average validation loss
over the 1000 mini data batch is already below 6.1 mm which
indicates only 8.2% decrease in loss for ten times the amount
of data. Therefore, instead of collecting millions of data points,
the paper will discuss in the following paragraphs how nonlin-
earity is added to raise model complexity and how the input fea-
tures and output space are reconstructed to improve the model
performance.
One major limitation of linear regression models is the linear

dependence between the output responses and the features. In
other words, each input feature has a fixed contribution to the
output. To convert this constant relationship into a functional
dependency, a neural network model is tested on this problem
which adds in nonlinearity using activation functions. After fine-
tuning on the 1000 mini data batch, the final architecture of the
neural network contains an input layer with 12 compressed fea-
tures, a hidden layer with 32 neurons, and an output layer with 16
coordinate predictions. The hidden layer is followed with a batch-
norm layer and the rectified linear unit activation. The training is
accomplished after 60 epochs of stochastic gradient descent with
a batch size of 16. The initial learning rate is set to 0.001 which
decreases to 0.0004 after 30 epochs. The average validation loss
over the 10 000 standard dataset is 5.3 mm which slightly out-
performs the linear models, but still not even close to the desired
1.4 mm average loss (detailed in the Experimental Section).
Despite the large validation loss, the training loss of the neural

network has reached below 0.5mm indicating a heavy overfitting.
We want to make a note here that even after an overfitting is ob-
served (training loss goes below validation loss), the validation
loss keeps decreasing and converges at 60 epochs. This suggests
the possibility of better reconstructing the problem. By far, the
abovementioned ML models treat the material distribution as an
array of numbers (features). In this case, the features are consid-
ered unorderedwhere onewould expect an exact samemodel per-
formance if the order of the features is changed consistently for
training and validation data. However, when solving such prob-
lems in an FEM approach, the stiffness matrix of an element is
heavily coupled with its neighbor elements. Thus, instead of an
unordered array of numbers that discards the spatial informa-
tion, the material distribution should be treated as a tensorial ob-
ject which has an underlying spatial basis. This is similar to the
case of image recognition in the computer vision field where both
the color intensity and the spatial arrangement of image pixels
should be considered in the model.
CNN is the most widely used framework in computer vision

for its ability to identify local image patterns with convolution
kernels. Figure 3a demonstrates three special cases of material
pattern which one would expect to bend downward, extend hor-
izontally, and bend upward after the blue material elements are
activated. And the three kernels are specialized so that they will

produce the largest output 9 only if the corresponding target pat-
tern shows up. Otherwise, the output from the kernel will be
much smaller depending on how different the pattern is. In the
real problem, material distribution is not intuitive as the sam-
ples given, nevertheless, the kernels can be learned through the
training process of CNN. Figure 3b shows the fine-tuned CNN
regression architecture which achieves an average validation loss
of 5.5 mm over the mini dataset and 2.4 mm over the standard
dataset. Different from previousmodels, CNN shows a huge leap
in its performance after the dataset expansion. To further explore
the model’s capability, CNN is then tested on the large dataset
with 40 000 training points and 10 000 validation points. The
training is accomplished after 20 epochs of stochastic gradient
descent with a batch size of 16. The initial learning rate is set to
0.001which decreases to 0.0002 after 10 epochs. The CNN regres-
sion model achieves an average validation loss of 1.49 mm (R-
squared value of 97%) over the large dataset which almost meets
the goal of 1.4 mm. To avoid any data contamination during gra-
dient descent, the model is further evaluated on the test dataset
which gives an average loss of 1.47 mm.
CNN regression architecture has proved its high capability

for such elementwise input features. However, the regression
approach often suffers from its poor generalization, especially
for complex models. As seen in Figure 3b, the regression archi-
tecture is kept relatively simple to avoid overfitting. Therefore,
the problem is reconstructed into multiclass classification with
a crossentropy loss which measures the difference in probability
distribution between a prediction and a ground truth label. The
reconstruction process is illustrated in Figure 3d. The real num-
ber axis is discretized into small regions which are labeled as dif-
ferent classes during the training process. The size of the small
regions is chosen to be 1 mm for this problem. Through the re-
construction, instead of directly predicting the nodal coordinate
after activation, the model predicts the probability that a node
would stay in a region. The class labels are mapped back to the
real numbers at the center of each region during the prediction.
Different from typical classification problems whose class mag-
nitude is physically meaningless, the order and distance between
classes contain considerable information in this reconstructed
problem. Thus, the real number coordinate prediction is calcu-
lated as the weighted sum over the classes. The training process
is the same as for the CNN regression model.
Since the 16 coordinates of the eight nodes each has a differ-

ent range, 16 different CNN architectures are required for all
the outputs which can be cumbersome. Therefore, the recon-
struction approach is first tested on the y2 coordinate of node
8 which possesses the largest variance among all the 16 coor-
dinates. From a preliminary observation on the training dataset
label range, the real y2 axis is divided into 125 regions: one re-
gion for (−∞, −4.7 cm), 123 regions for [−4.7 cm, 7.6 cm], and
one region for (7.6 cm, +∞). Figure 3c shows the fine-tuned
CNN classification architecture which achieves a validation loss
of 1.89 mm (|y28 − ŷ28|) with an R-squared value of 98%. Note
that the CNN regression model’s node 8 y2 validation loss is
2.74 mm. The reconstruction approach is then tested on the y1
coordinate of node 8 to show its general applicability. The new
architecture for node 8 y1 reaches a validation loss of 1.11 mm
(|y18 − ŷ18|). To better visualize the performance, the distance

Adv. Theory Simul. 2020, 3, 2000031 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000031 (4 of 8)

www.advancedsciencenews.com www.advtheorysimul.com

Figure 3. a) Convolution kernels learn to recognize material distribution patterns. Some sample detection kernels are shown on the right. Each sample
kernel will produce an output of 9 if a corresponding target pattern shows up. Otherwise, they will produce much smaller outputs. b) The architecture of
the fine-tuned CNN regression model that predicts the 16 coordinates. c) The architecture of the fine-tuned CNN classification model that predicts node
8 y2 coordinate. d) The regression problem can be reconstructed into a classification problem. During the labeling process, the real number coordinates
should be discretized into small regions and each of them represents a class label. The model is then trained to predict the probability of each class
(highlighted in red). Thereafter, the probability outputs can be mapped back to a real number by taking a weighted sum.

loss of node 8 fromCNN regression and classificationmodels are
plotted in Figure 4a,b. Both plots show great advancement com-
pared to the quadratic kernelized linear regression model, and
the predictions from the CNN classification model concentrate
more on the low error region. The reconstructed models reach a
node 8 y1 and y2 loss of 1.12 and 1.89 mm on the test dataset in-
dicating no overfitting during training or validation. Despite the
undesirable computation cost, the success of the classification

model proves the importance of problem construction besides
model selection when applying ML techniques to finite element
problems.
One major drawback of a deep neural network (compared to

linear regressions) is its lack of interpretability due to the complex
architecture. Although it is very difficult to fully understand how
the model predicts, a sensitivity analysis can still provide some
high-level ideas for the input–output relationship. In this work,

Adv. Theory Simul. 2020, 3, 2000031 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000031 (5 of 8)

www.advancedsciencenews.com www.advtheorysimul.com

Figure 4. a) The bar plot shows the validation data distribution from the CNN regression model. It has an average validation loss of 1.49 mm and node
8 loss of 3.3 mm. b) The bar plot shows the validation data distribution from the reconstructed CNN classification model with node 8 loss of 2.5 mm.
c) The expected sensitivity of node 8 y2 coordinate with respect to the material elements. The expected sensitivity is taken to be the average sensitivity
over the 10 000 validation points. For elements in red, they are expected to increase y2 (right tip moves up) if they are assigned to be active materials.
And for elements in blue, they are expected to push down the right tip if they are assigned to be active. d) The mean absolute value and the standard
deviation of the expected sensitivity over the 10 000 validation points.

sensitivity is defined as the gradient of an output direction over
an input feature[8] without square or absolute value. In the case
of a linear model, the sensitivity is simply the constant weight in
front of a certain feature (either original or augmented). While
for neural networks, a feature’s “weight” becomes a function that
depends heavily on the entire feature set and can be computed
through the backpropagation. As a result, calculating the sensi-
tivity based on a specific data point is not generally informative
for the problem. Instead, the average sensitivity over 10 000 vali-
dation data is calculated and plotted in Figure 4c to interpret the
reconstructed CNN model that predicts node 8 y2 displacement.
Since the active material elements are encoded as 1 and−1 other-
wise (detailed in the Experimental Section), for elements in red,
they are expected to push y2 upward if they are assigned the ac-

tive material. Similarly, for elements in blue, they are expected
to push y2 downward if they are assigned to be active. The sim-
plicity of the geometry allows validating the sensitivity plot with
physical intuition. One would expect the same effect from the
active materials as plotted in Figure 4c. Note that the sensitiv-
ity does not change much along the y1 direction since the ma-
terial distribution is mirrored about the center axis. This consis-
tency between sensitivity analysis and intuition proves the feasi-
bility of this approach to gain high-level physical understanding.
This would manifest more in other complex geometries which
will not be discussed in this work. Figure 4d plots the standard
deviation of sensitivities and the mean of absolute sensitivities
among the 100 material features. The standard deviations have
similar or larger amplitudes than the mean values implying high

Adv. Theory Simul. 2020, 3, 2000031 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000031 (6 of 8)

www.advancedsciencenews.com www.advtheorysimul.com

Table 1. The validation results of different ML models with and without feature compression, all units are in millimeter. Note that the two CNN models
are trained on the 50 000 large dataset for their outstanding model capacity, while all other models are trained on the 10 000 standard dataset.

KNN OLS Quadratic RBF Neural network CNN regression CNN classification

Average loss (100/12 features) 8.0/7.7 6.3/6.2 6.2/5.6 6.2/5.7 6.0/5.3 1.5/(N/A) N/A

Node 8 loss (100/12 features) 18.1/17.2 13.9/14.2 13.5/12.1 13.8/12.4 13.1/11.7 3.3/(N/A) 2.5(N/A)

nonlinearity of this displacement prediction problem as men-
tioned previously.
To summarize, this work demonstrates the capability of ma-

chine learning models in predicting and understanding the de-
formation response of digital materials. The performances of ML
models are summarized in Table 1. Results show that models
that treat element information as unordered arrays fail to accu-
rately predict the deformation. Instead, significantly higher per-
formance is achieved using convolution kernels which learn the
material distribution patterns without a loss of spatial informa-
tion. Furthermore, discretizing the output space into a classi-
fication model (crossentropy loss) improves the generalization
and outperforms the regression model (mean square loss). How-
ever, the reconstruction approach comes with the highest com-
putational cost for training (30 min for one model and a total of
16 models are required for all 16 coordinates) depending on the
range of deformation and resolution of prediction. And all mod-
els take less than 0.01 s tomake a prediction. The sensitivity anal-
ysis through backpropagation has proved its ability to offer high-
level design information and measure the nonlinearity of the re-
sponse function. Though this work focused on the deformation
of a curved beam, it is believed that the ML framework can be
applied to digital materials with more complex geometries and
responses.

Experimental Section
Simulation Setup: The original state (nonactivated) of the curved

beam geometry is shown in Figure 1a with its left end fixed. The geom-
etry was meshed into 4*64 2D plane stress elements. Each element be-
longed either to the passivematerial (Modulus: 1 GPa, Poisson’s ratio: 0.3,
Swelling: 0%) or the active material (Modulus: 10 MPa, Poisson’s ratio:
0.48, Swelling: 18%) with isotropic linear elasticity assumption under the
finite deformation scheme. To constrain the complexity of the test prob-
lem without loss of generality, the following assumptions were taken: The
design space was taken to be the material distribution within the high-
lighted zone (yellow) which contained 4*25 elements. The active mate-
rial elements were selected randomly from a uniform distribution among
the 100 candidate grids. The total number of active elements was upper
bounded by 50 and lower bounded by 30. This material distribution was
then mirrored about the symmetrical axis of the geometry. The simulation
input files were generated with Matlab, solved with Abaqus, and postpro-
cessed with the Abaqus2Matlab toolbox. Each simulation took ≈15 s on
the Intel Xeon E-2146G central processing unit (CPU). In Figure 1a on the
right of the original state plot, the plots (deformation 1 and deformation
2) show the deformation responses from two randomly generated sample
material distributions.

Machine Learning: The problem setup described above yielded ap-
proximately 1e30 digital material configurations which were impossible to
be enumerated. Therefore, machine learning will be applied to learn and
predict the geometry deformation after the digital material is activated.
Precisely, the input features will be the material distribution and the out-
puts will be the 16 coordinate displacements of the eight interest nodes as

seen in Figure 1a. Three separate datasets (mini: 1000, standard: 10 000,
large: 50 000) were generated for hyperparameter tuning, model compar-
ison, and investigating the effect of dataset expansion. Each dataset had
20% of its data points isolated for validation. Different ML models will
be tested and discussed on this problem including K-nearest neighbors,
linear regression (kernelized), neural networks, convolutional neural net-
works (regression and classification). The goal was to reach an average
validation loss of less than 1.4 mm which was approximately the diagonal
length of an element.

Feature Compression: Since the 100 features of the original problem
were all binary values, reducing them into fewer number of real value fea-
tures might improve the generalization of the ML model. However, the
uniform data generation process created a spherical data distribution in
the input space where all features were expected to share the same vari-
ance. Therefore, instead of extracting the eigenvectors of the data matrix,
it was chosen to compress the features through clustering which still re-
tained the material distribution information, but on a larger scale. Like all
other feature compression methods, clustering the element information
will cause an increase in bias, however, less focus on a single element will
help the generalization. For the 2D geometry with a curved beam shape
that is studied in this work, one would expect a higher importance in the
material distribution along the thickness direction than the length. A sam-
ple feature compression is illustrated in Figure 1b where a 4 by 10 element
system is used instead of the real 4 by 25 system for concise visualization.
A total number of four clusters were created with each of them represent-
ing the material distribution of one layer of element. For each layer, the
elements were indexed from 1 to 25. Then, the count of active materials,
the mean index, and the variance of index were recorded to represent the
distribution yielding the 12 compressed features.

Acknowledgements
The authors acknowledge support from the Extreme Science and Engi-
neering Discovery Environment (XSEDE) at the Pittsburgh Supercomput-
ing Center (PSC) by National Science Foundation Grant Number ACI-
1548562. Additionally, the authors acknowledge support from the Chau
Hoi Shuen Foundation Women in Science Program and an NVIDIA GPU
Seed Grant.

Conflict of Interest
The authors declare no conflict of interest.

Keywords
convolutional neural networks, deep learning, digital materials, finite ele-
ments, machine learning

Received: February 14, 2020
Revised: April 14, 2020

Published online: May 17, 2020

[1] a) M. Vaezi, S. Chianrabutra, B. Mellor, S. Yang, Virtual Phys. Prototyp-
ing 2013, 8, 19; b) G. X. Gu, C.-T. Chen, D. J. Richmond, M. J. Buehler,
Mater. Horiz. 2018, 5, 939; c) Z. Jin, Z. Zhang, G. X. Gu, Manuf. Lett.

Adv. Theory Simul. 2020, 3, 2000031 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000031 (7 of 8)

www.advancedsciencenews.com www.advtheorysimul.com

2019, 22, 11; d) Z. Jin, Z. Zhang, G. X. Gu, Adv. Intell. Syst. 2020, 2,
1900130; e) W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C.
B. Williams, C. C. Wang, Y. C. Shin, S. Zhang, P. D. Zavattieri, Comput.-
Aided Des. 2015, 69, 65.

[2] a) Z. X. Khoo, J. E.M. Teoh, Y. Liu, C. K. Chua, S. Yang, J. An, K. F. Leong,
W. Y. Yeong, Virtual Phys. Prototyping 2015, 10, 103; b) Z. Zhang, K. G.
Demir, G. X. Gu, Int. J. Smart Nano Mater. 2019, 10, 205.

[3] a) F. Momeni, X. Liu, J. Ni,Mater. Des. 2017, 122, 42; b) Y. Mao, K. Yu,
M. S. Isakov, J. Wu, M. L. Dunn, H. J. Qi, Sci. Rep. 2015, 5, 13616; c) J.
Hiller, H. Lipson, Rapid Prototyping J. 2010, 16, 241.

[4] a) Y. Yu, H. Liu, K. Qian, H. Yang, M. McGehee, J. Gu, D. Luo, L. Yao,
Y. J. Zhang, arXiv preprint arXiv:1909.02083 2019; b) Z. Zhao, H. J. Qi,
D. Fang, Soft Matter 2019, 15, 1005.

[5] a) F. Martínez-Martínez, M. J. Rupérez-Moreno, M. Martínez-Sober, J.
Solves-Llorens, D. Lorente, A. Serrano-López, S. Martínez-Sanchis, C.
Monserrat, J. D. Martín-Guerrero, Comput. Biol. Med. 2017, 90, 116;
b) C.-T. Chen, G. X. Gu, MRS Commun. 2019, 9, 556; c) M. Bessa, R.
Bostanabad, Z. Liu, A. Hu, D. W. Apley, C. Brinson, W. Chen, W. K.
Liu, Comput. Methods Appl. Mech. Eng. 2017, 320, 633; d) C. Yang, Y.
Kim, S. Ryu, G. X. Gu, Mater. Des. 2020, 189, 108509; e) C. T. Chen,
G. X. Gu, Adv. Sci. 2020, 7, 1902607; f) R. Hambli, H. Katerchi, C.-L.
Benhamou, Biomech. Model. Mechanobiol. 2011, 10, 133; g) W. Yan, S.

Lin, O. L. Kafka, Y. Lian, C. Yu, Z. Liu, J. Yan, S. Wolff, H. Wu, E. Ndip-
Agbor, Comput. Mech. 2018, 61, 521; h) K. Wang, W. Sun, Comput.
Methods Appl. Mech. Eng. 2018, 334, 337; i) F. Ghavamian, A. Simone,
Comput. Methods Appl. Mech. Eng. 2019, 357, 112594; j) Z. Liu, C. Wu,
M. Koishi, Comput. Methods Appl. Mech. Eng. 2019, 345, 1138; k) X. Lu,
D. G. Giovanis, J. Yvonnet, V. Papadopoulos, F. Detrez, J. Bai, Comput.
Mech. 2019, 64, 307.

[6] a) C. M. Hamel, D. J. Roach, K. N. Long, F. Demoly, M. L. Dunn, H.
J. Qi, Smart Mater. Struct. 2019, 28, 065005; b) J. H. S. Almeida,Jr., M.
L. Ribeiro, V. Tita, S. C. Amico, Compos. Struct. 2017, 178, 20; c) H. A.
Deveci, L. Aydin, H. Seçil Artem, J. Reinf. Plast. Compos. 2016, 35, 1233;
d) C. T. Chen, G. X. Gu, Adv. Theory Simul. 2019, 2, 1900056.

[7] a) S. Liu, X. Chen, Y. Zhang, in 3D and 4D Printing of Polymer Nanocom-
posite Materials, Elsevier, Doha, Qatar 2020, p. 427; b) A. B. Baker, S.
R. Bates, T. M. Llewellyn-Jones, L. P. Valori, M. P. Dicker, R. S. Trask,
Mater. Des. 2019, 163, 107544; c) H. Wu, P. Chen, C. Yan, C. Cai, Y.
Shi, Mater. Des. 2019, 171, 107704; d) M. López-Valdeolivas, D. Liu,
D. J. Broer, C. Sánchez-Somolinos, Macromol. Rapid Commun. 2018,
39, 1700710; e) A. Miriyev, K. Stack, H. Lipson, Nat. Commun. 2017,
8, 596.

[8] G. Montavon, W. Samek, K.-R. Müller, Digital Signal Process. 2018,
73, 1.

Adv. Theory Simul. 2020, 3, 2000031 © 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim2000031 (8 of 8)

