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Elastography is an imaging technique to reconstruct elasticity
distributions of heterogeneous objects. Since cancerous tissues are
stiffer than healthy ones, for decades, elastography has been applied
to medical imaging for noninvasive cancer diagnosis. Although the
conventional strain-based elastography has been deployed on ul-
trasound diagnostic-imaging devices, the results are prone to inac-
curacies. Model-based elastography, which reconstructs elasticity
distributions by solving an inverse problem in elasticity, may pro-
vide more accurate results but is often unreliable in practice due to
the ill-posed nature of the inverse problem. We introduce ElastNet,
a de novo elastography method combining the theory of elasticity
with a deep-learning approach. With prior knowledge from the
laws of physics, ElastNet can escape the performance ceiling im-
posed by labeled data. ElastNet uses backpropagation to learn the
hidden elasticity of objects, resulting in rapid and accurate predic-
tions. We show that ElastNet is robust when dealing with noisy or
missing measurements. Moreover, it can learn probable elasticity
distributions for areas even without measurements and generate
elasticity images of arbitrary resolution. When both strain and elas-
ticity distributions are given, the hidden physics in elasticity—the
conditions for equilibrium—can be learned by ElastNet.

deep learning | neural networks | elastography | elasticity theory |
inverse problems

Being able to reconstruct mechanical property distributions of
objects noninvasively has a broad range of applications in

materials science (1), civil engineering (2), biomedical engineering
(3), and clinical diagnosis (4, 5). As various diseases progress, the
stiffness (elasticity) of cells, tissues, and organs are often altered
(6). Palpation, a self-screening procedure for tumors, utilizes the
difference in elasticity between healthy and cancerous tissues to
distinguish them. The displacement (or strain) distribution of an
elastic body under deformation can be acquired by a variety of
imaging techniques (e.g., ultrasound, MRI, digital image correla-
tion) (1, 3–5). If the stress distribution of the body is also known,
the elasticity distribution can be calculated by the elastic constitutive
relation (Hooke’s law). However, there is currently no technique
that can measure the stress distribution of a body in vivo. Therefore,
in the applications of elasticity imagining (elastography), the stress
distribution of a body is commonly assumed to be uniform, and the
measured strain distribution is interpreted as a relative elasticity
distribution. This approach is referred to as strain-based elas-
tography and has the advantage of being easy to implement (7).
The assumption of stress uniformity, however, is inaccurate. The
stress field of a body can be distorted significantly near a hole,
inclusion, or wherever the elasticity varies. This phenomenon,
known as stress concentration, is of great interest in industry and
academia (8–10). To mitigate this misinterpretation, a research field
focusing on solving an inverse problem associated with elastography
has been extensively investigated for decades (11–13). In this
approach, referred to as model-based elastography, the elasticity
distribution of a body can be, in principle, reconstructed by
modeling the elastic behavior of the body and solving the inverse
problem in elasticity.
To tackle this inverse problem, the predominant approaches in

the literature are based on minimizing the difference between the
measured and simulated displacements (7, 14–17). These approaches

are computationally expensive as they need many iterations—each
iteration requires solving a forward problem (e.g., using the finite
element analysis) and conducting sensitivity analysis in order to
update the prediction. It is possible to solve this inverse problem
directly. In other approaches, known as direct approaches, mea-
surements are considered as coefficients in the partial differential
equations (PDEs) for equilibrium (∇σ = 0) (18–20). While the
direct approaches are computationally more efficient than the it-
erative approaches, they often perform poorly when the mea-
surements contain large strain gradients or noise or when the
elasticity distribution is not smooth (not differentiable). Moreover,
the error from noise tends to propagate along the integration path
when solving the PDEs, thus producing low-quality results (18).
Due to these limitations, model-based elastography methods were
mostly applied to simple elastography problems such as a uniform
body containing a few circular inclusions.
Inverse problems arise in many scientific and engineering fields

and are difficult to solve using conventional approaches (21–23).
In recent years, much progress toward artificial intelligence and
machine learning (ML) has been made and provided novel di-
rections to solve inverse problems. For instance, ML techniques
were applied to inverse problems in materials design (24–26), fluid
mechanics (27, 28), and many others (29–34). To obtain useful
information from an elasticity image (e.g., to identify potential
tumors), the number of pixels (resolution) is typically on the order
of 103 to 105. Due to the high-dimensional input space (strain
distribution) and output space (elasticity distribution), the hidden
correlation between them is difficult to capture by conventional
supervised learning using labeled data. In principle, supervised
learning may still work for this inverse problem if the number of
possible elasticity distributions can be largely reduced. A simple
way to do so, for instance, is to consider a uniform body containing
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a few inclusions and constrain the possible shapes, sizes, locations,
and elastic moduli of these inclusions (35). However, when an ML
model is trained in this manner, adding such artificial constraints
limits the application of the model in practice.

Results
Deep Learning for Elastography.We introduce ElastNet, a de novo
elastography method to learn the hidden elasticity of a body with
a deep neural network (DNN). The framework of ElastNet is
summarized in Fig. 1. The DNN fθ with learning parameters θ is
not trained from labeled data—it is never shown the correct
elasticity distribution. By contrast, it is supervised by the theory of
elasticity, thus allowing it to escape the performance ceiling im-
posed by labeled data. The elastic constitutive relation (σ = Ce)
and equilibrium equation (∇σ = 0) for solving the inverse problem
in elasticity are encoded in the DNN as prior knowledge. Bio-
logical tissues are mainly composed of water, and they are nearly
incompressible (4). Here, all material points in a body of interest
are assumed to be linear, isotropic, and incompressible. The
elasticity at a material point can be described by either Young’s
modulus E or shear modulus G. Without loss of generality,
Young’s modulus E is used to quantify the elasticity in this work.
The body is assumed to be a thin plate, and thus the nonzero stress
components are σxx, σyy, and τxy (plane stress state). The infor-
mation of position p and strain « at all material points is converted
to a data set. The stress σ at each material point is calculated by
the encoded elastic constitutive relation based on the measured

strain « and predicted elasticity E (seeMaterials and Methods). The
DNN fθ takes the information of position p at each material point
as an input and outputs its elasticity, E = fθ(p). The information of
strain « at each material point is not involved in the forward-
propagation for predicting the elasticity but is used in the back-
propagation for updating the weights θ. When the entire data set is
passed forward through the DNN, a predicted stress distribution σ
is generated.
A predicted stress distribution σ includes three stress images

(σxx, σyy, τxy). Before training, these strain images are unlikely to
satisfy the conditions for equilibrium, as the initial elasticity dis-
tribution E is generated by the DNN with random weights θ. To
evaluate how close the predicted stress distribution σ is from
equilibrium, the stress images are passed forward through a con-
volutional layer in the DNN. Unlike other convolutional neural
networks, in which the kernels need to be learned from labeled
data, the kernels in our convolutional layer are encoded in such a
way that the convolution operation is used to evaluate the con-
ditions for equilibrium (explained in Learning the Conditions for
Equilibrium). Unbalanced (residual) force maps are then gener-
ated by the convolution operation. The training procedure mini-
mizes the norms of the residual forces with an additional physical
constraint (to be discussed) and updates the weights θ using
backpropagation. Consequently, the predicted elasticity distribu-
tion E is updated and then used in the next iteration of training.
This training procedure repeats until the predicted elasticity dis-
tribution E is converged.

Fig. 1. Framework of ElastNet. The DNN fθ takes the information of position p at each material point as an input and outputs its elasticity, E = fθ(p). The
stress σ at each material point is calculated by the encoded elastic constitutive relation (σ = Ce) based on the measured strain « and predicted elasticity E. When
the entire data set is passed forward through the DNN, a predicted stress distribution σ is generated. Residual force maps are then generated by the con-
volution operation. The training procedure minimizes the norms of the residual forces with an additional physical constraint and updates the weights θ using
backpropagation. Consequently, the predicted elasticity distribution E is updated and then used in the next iteration of training. This training procedure
repeats until the predicted elasticity distribution E is converged.
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Learning the Conditions for Equilibrium. The deep-learning frame-
work in ElastNet is similar in spirit to the so-called physics-informed
deep learning (28, 29, 31), in which physical laws are encoded into
the loss function. Most physics-informed models used automatic
differentiation (36) to solve the PDEs in physics. However, automatic
differentiation may not be appropriate for the inverse problem in this
work. As mentioned, measured strains naturally contain noise,
and differentiating the strains can amplify the noise significantly.
Moreover, this approach requires the elasticity distribution of a
body to be differentiable, which is often not true in practice. Instead
of using automatic differentiation, ElastNet uses a convolution
operation to solve the PDEs for equilibrium. To elaborate on the
idea, we consider a small cube with sides of length h. The equi-
librium conditions for the cube can be expressed in finite differ-
ence forms as (see Materials and Methods):

σxx(x + h, y) − σxx(x, y) + τyx(x, y + h) − τyx(x, y) = 0, [1]

σyy(x, y + h) − σyy(x, y) + τxy(x + h, y) − τxy(x, y) = 0.

We assume that the cube is made up of 3 × 3 material points as
shown in Fig. 2A. Eq. 1 can be expressed in terms of the stress
components at these material points:

∑3
a=1

∑3
b=1

wxx(a, b)σxx(a, b) + wyy(a, b)σyy(a, b) + wxy(a, b)τxy(a, b) = 0,

[2]

where wxx, wyy, and wxy are the convolution kernels for σxx, σyy, and
τxy, respectively. By choosing proper values for the kernels, Eq. 2
can be used to describe the equilibrium conditions for the cube.
Two sets of kernels are encoded in the DNN to describe the
equilibrium conditions in the x-direction and y-direction, respec-
tively (Fig. 2A). These kernels may therefore be viewed as “equi-
librium detectors”. Residual force maps (Fig. 1) can be generated
by the convolution operation, in which each residual force is cal-
culated by

e(i, j) = ∑3
a=1

∑3
b=1

(wxx(a, b)σxx(i + a − 1, j + b − 1) + wyy(a, b)σyy(i + a

− 1, j + b − 1) + wxy(a, b)τxy(i + a − 1, j + b − 1))ht,
[3]

where t is the thickness of the cube. Here, we show that the con-
ditions for equilibrium can be encoded in the DNN as domain
knowledge for solving the inverse problem. Now, we consider the
possibility of learning this domain knowledge from labeled data.
To test this idea, an inhomogeneous body is modeled by the finite
element method (FEM) with a 128 × 128mesh. The elasticity field
of the body is defined by a two-dimensional sinusoidal function,

E(x, y) = 0.45(1 + cos(4πxL )cos(4πyL )) + 0.1. The unit is megapascal

(MPa). Thus, the maximum and minimum modulus values are 1
MPa and 0.1 MPa, respectively. This “sinusoidal” model is sub-
jected to externally applied displacements along the x-direction on
the boundary. An average normal strain («xx) of 1% is introduced
by the applied displacements. The details of the finite element
analysis can be found in our previous work (26) and are summa-
rized in Materials and Methods.
The elasticity and strain distributions of the sinusoidal model

are shown in Fig. 2B. To learn the conditions for equilibrium, the
elasticity and strain distributions are both fed into the DNN, and
the loss function is defined as the mean absolute error (MAE) of
the residual forces. From Eq. 3, it can be seen that the kernels
(wxx, wyy, and wxy) cannot be uniquely determined by minimizing

the norms of the residual forces. A trivial solution is to set all of
the kernel values to zeros. Thus, to obtain physically meaningful
kernels, additional information must be given. For instance, when
the kernel for τxy to describe the equilibrium condition in the
x-direction is given, the other two kernels, which are for σxx and σyy,
can be learned. Similarly, when the kernel for τxy to describe the
equilibrium condition in the y-direction is given, the other two
kernels can be learned. The kernels learned by the DNN are
shown in Fig. 2B and are almost identical to those derived mathe-
matically shown in Fig. 2A. The results show that the kernels
encoded in the DNN to describe the conditions for equilibrium are
correct, as the same kernels can be learned from the hidden cor-
relation between the elasticity and strain distributions by the DNN.

Learning Hidden Elasticity. A strain distribution alone does not pro-
vide sufficient information to generate a unique elasticity distri-
bution; an additional physical constraint must be imposed (12, 19).
We first investigate the effect of physical constraints on prediction
accuracy (SI Appendix, Fig. S1 and Movies S1 and S2). We dem-
onstrate that ElastNet can generate accurate predictions when
imposing a proper physical constraint based on either the total
applied force on the boundary or the mean elasticity. In practice,
measured strains naturally contain a certain amount of noise. We
also investigate the effect of noise in measurements on prediction
accuracy (SI Appendix, Fig. S2 and Movies S3 and S4). We show
that ElastNet is robust when dealing with noisy measurements. To
evaluate the performance of ElastNet, we compare it with OpenQSEI
(17), an iterative model-based elastography method using FEM.
We show that ElastNet generates more accurate predictions and
is computationally more efficient compared with OpenQSEI
(SI Appendix, Figs. S3–S6 and Tables S1–S3).
Most elastography problems assume that measurements are

known everywhere in a body. Here, we consider a more challenging
problem in which some of the measurements in a body are miss-
ing. Noisy measurements may still provide useful information for
learning the hidden elasticity. However, missing measurements
not only provide no information for solving the inverse problem
but also may cause the calculation to break down. Here, we con-
sider a uniform body containing a soft inclusion with a shape similar
to the University of California, Berkeley “Cal” logo. In this “Cal”
model, the modulus values of the body and soft inclusion are 1MPa
and 0.1MPa, respectively. The elasticity and strain distributions of
the model are shown in Fig. 3A. In the first scenario, we assume
that there is no missing data in the measured strains. In the second
scenario, we assume that the measured strains in an arbitrary area
are missing (set to zeros). The predicted elasticity distributions
and relative error maps (compared with the ground-truth elasticity
distribution) are shown in Fig. 3B, and the error over the training
epochs is shown in Fig. 3C. In the first scenario, the predicted
elasticity distribution is accurate with a mean relative error (MRE)
of 3.01%. Larger errors occur on the boundary between the body
and soft inclusion due to large elasticity differences. In the second
scenario, the predicted elasticity distribution is still accurate with
an MRE of 6.97%, given that the measurements on a squared area
(corresponds to 6.25%of the total area) are missing (yellow-boxed
area in Fig. 3B). Larger errors occur on the boundary between the
body and soft inclusion and also in the area without data. If the area
without data is excluded, the MRE is reduced to 2.95%, which is
almost the same as the MRE observed in the first scenario with
the full data (3.01%). The results show that, for ElastNet, missing
measurements only reduce the prediction accuracy in the area
without data but do not affect the prediction accuracy in the other
areas. Moreover, the DNN is trained to learn the hidden elasticity
as a function of positions (Fig. 1). Once such a function is learned,
ElastNet can predict a probable elasticity distribution for the area
even without measurements (inner figure of Fig. 3C). The learning
processes for the first and second scenarios are shown in Movies
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S5 and S6, respectively. Lastly, we compare ElastNet with Deep-
Fill (37, 38), one of the state-of-the-art image inpainting methods.
DeepFill is based on a variant of generative adversarial networks
(39), named SN-PatchGAN, with gated convolution trained with
millions of images. We use DeepFill to fill missing pixels of pre-
dicted elasticity images generated by ElastNet and show that the
results obtained from both methods are of equivalent quality
(SI Appendix, Figs. S7 and S8 and Table S4).

Superresolution Elasticity Imaging. For most elastography methods,
the resolution of predicted elasticity distributions (elasticity im-
ages) is limited by the resolution of measurements. ElastNet can
generate elasticity images of arbitrary resolution. Here, we apply
ElastNet to generate a high-resolution elasticity image from low-
resolution measurements. Inspired by the beauty and complexity
of Mona Lisa by Leonardo da Vinci, we consider an inhomoge-
neous body with an elasticity distribution similar to the painting. In
this “Mona Lisa” model, the maximum and minimum modulus
values are 1 MPa and 0.1 MPa, respectively. The elasticity and
strain distributions of the model are shown in Fig. 4A. The pre-
dicted elasticity distribution and relative error map are shown in
Fig. 4B, and the error over the training epochs is shown in Fig. 4C.
While the Mona Lisa model has an extremely complex elasticity
distribution, the prediction accuracy is high with an MRE of
2.73%. No visible difference between the ground truth and
prediction can be seen. To understand how ElastNet learns the

hidden elasticity, intermediate predictions generated during the
learning process are shown in the inner figures of Fig. 4C. Inter-
estingly, it can be seen that ElastNet draws an outline first and then
adds more details gradually. This process is similar to how an artist
draws. The Mona Lisa model is discretized with a 128 × 128 mesh.
Thus, the resolution of the measured strains is 128 × 128 (Fig. 4A).
After learning the hidden elasticity from the measured strains,
ElastNet can generate elasticity images of arbitrary resolution.
Here, ElastNet is applied to generate an elasticity image of a higher
resolution—512 × 512. For comparison, a crop of the ground-truth
image and that of the superresolution image are shown in Fig. 4D.
The superresolution image seems realistic and provides more de-
tails compared with the ground-truth image.
A conventional deep-learning model is trained on a data set and

can be applied to predict an elasticity distribution based on a new
strain distribution without retraining the model (35). ElastNet, on
the other hand, is not supervised by labeled data, and thus its per-
formance is not limited by the amount, distribution, and accuracy
of the data. However, ElastNet needs to be retrained for different
elastography problems. Therefore, the computational efficiency of
ElastNet is essential for elasticity imaging in practice. To make an
accurate prediction for the Mona Lisa model (Fig. 4B), ElastNet
takes about 80 min for training 800,000 epochs on a workstation
using a single graphics processing unit (GPU). After about 3,000
epochs (∼20 s) of training, an intermediate prediction with much
detail can already be obtained (inner figures of Fig. 4C). The learning

Fig. 2. Encoding and learning equilibrium conditions. (A) A representative cube consists of 333 material points. The equilibrium conditions for the cube can
be expressed in terms of the stress components at these material points. Two sets of kernels are encoded in the DNN to describe the equilibrium conditions in
the x-direction (upper three kernels) and y-direction (lower three kernels), respectively. (B) The sinusoidal model is subjected to externally applied dis-
placements along the x-direction on the boundary. An average normal strain («xx) of 1% is introduced by the applied displacements. To learn the conditions
for equilibrium, the elasticity and strain distributions are both fed into the DNN, and the loss function is defined as the MAE of the residual forces. The kernels
learned by the DNN are almost identical to those derived mathematically shown in A.
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process is shown in Movie S7. With further improvements on the
DNN architecture, ElastNet may be applied in an environment re-
quiring real-time elasticity imaging with broad implications in vari-
ous fields. Lastly, we compare ElastNet with ESRGAN (40), which
won first place in the 2018 Perceptual Image Restoration and
Manipulation Challenge on Perceptual Image Superresolution. We
apply ESRGAN to produce a high-resolution version of a predicted
elasticity image generated by ElastNet and show that the results
obtained from both methods are comparable (SI Appendix, Fig. S9
and Table S5).

Discussion
Conventional model-based elastography using FEM represents
an elasticity image as a set of pixels. In this work, we consider an
elasticity image as a mathematical function. Given a large enough
DNN, any complex elasticity image can be approximated by the
DNN. This approach ensures that a target elasticity distribution
can be represented as a function and allows a learning algorithm
to gradually update the function. Here, all material points in a
body of interest are assumed to be linear, isotropic, and incom-
pressible. However, ElastNet can be extended to consider com-
pressible materials if necessary. For instance, instead of setting
Poisson’s ratio at each material point to 0.5, it can be represented
as an unknown variable. Thus, the DNN fθ will take the infor-
mation of position p at each material point as an input and output
its elasticity and Poisson’s ratio simultaneously, (E, ν) = fθ(p). We
show that, by combining the theory of elasticity with a deep-

learning approach, ElastNet can generate rapid and accurate
predictions. The prediction accuracy depends on the complexity of
the hidden elasticity. A higher prediction accuracy may be expected
when the elasticity distribution is simpler or smoother. We also
show that ElastNet is robust when dealing with noisy measure-
ments. For measurements with missing data, only the prediction
accuracy in the area without data will be compromised and the
prediction accuracy in the other areas will not be affected. Once
the function of an elastic image is learned, the DNN can predict
probable elasticity distributions for areas even without measure-
ments and generate elasticity images of arbitrary resolution. To
obtain better performance, incorporating other DNNs specifically
trained for image inpainting or single-image superresolution into
ElastNet is recommended. With prior knowledge from the theory
of elasticity, ElastNet does not require any labeled data for training,
and thus no artificial constraint on possible elasticity distributions
needs to be imposed. This advantage allows ElastNet to be applied
to a broad range of elastography problems in which no prior
knowledge is available on the hidden elasticity.

Materials and Methods
Finite Element Analysis. A body of interest is discretized by four-node quadri-
lateral elements with a 128 × 128 mesh. The modulus of each element is de-
termined based on the elasticity distribution of the body. To simulate an
incompressible material, Poisson’s ratio of each element is set to 0.5. The
boundary and loading conditions of the body are shown in SI Appendix, Fig.
S10. The top and bottom boundaries are free. The left boundary is fixed in

Fig. 3. Effect of missing measurements. (A) The ground-truth elasticity distribution (in grayscale) and strain images (in color) of the “Cal” model. The unit in
the elasticity distribution is MPa and that in the strain images is percentage (%). (B) The predicted elasticity distributions (in grayscale) and relative error maps (in
color) for the scenario with the full data and that with missing data. The unit in the error maps is percentage (%). The yellow-boxed area represents the area
without data (corresponds to 6.25%of the total area). (C) The blue and red shaded lines represent the MAE over the training epochs for the scenario with the full
data and that with missing data, respectively. The DNNs are trained 100 times with different initial weights. The line and shading represent the median and
interquartile range of the 100 predictions, respectively. The inner figure shows a probable elasticity distribution for the area without data predicted by ElastNet.
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such a way that the movements are not allowed along the horizontal direction
(x-direction) but are allowed along the vertical direction (y-direction). To ob-
tain a nonzero strain distribution of the body, external displacements along
the x-direction are applied on the right boundary. The applied displacements
are 1% of the body length. Thus, an average normal strain along the
x-direction («xx) of 1% can be generated. The strain distribution is calcu-
lated from the displacement distribution.

Encoded Domain Knowledge of Elasticity. For a two-dimensional body, the
relation between the strain and displacement with respect to the Cartesian
axes is given by

e =
⎧⎨⎩
«xx
«yy
γxy

⎫⎬⎭ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u
∂x
∂v
∂y

∂u
∂y

+ ∂v
∂x

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
, [4]

where e is the strain vector and u and v are the horizontal and vertical
components of the displacement, respectively. The constitutive elasticity
relation for a linear elastic isotropic material in plane stress is given by

σ =
σxx
σyy
τxy

⎧⎨⎩ ⎫⎬⎭ = E
1 − ν2

1 ν 0
ν 1 0
0 0 1 − ν( )=2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ «xx
«yy
γxy

⎧⎨⎩ ⎫⎬⎭ , [5]

where σ is the stress vector, E is Young’s modulus, and ν is Poisson’s ratio. The
equilibrium conditions are typically written in differential forms:

∂σxx
∂x

+ ∂τyx
∂y

= 0 [6]

and

∂σyy
∂y

+ ∂τxy
∂x

= 0.

These PDEs carry the derivatives of the stress field, which are the functions of
the derivatives of the strain field and elasticity field. The derivatives of the
strain field can be calculated from measured strains. However, measured
strains naturally contain noise, and the calculation of the derivatives can
amplify the noise significantly. The derivatives of the elasticity field cannot be
calculated accurately when the derivatives of the strain field are inaccurate.
To mitigate this potential problem, we rewrite the equilibrium conditions in
finite difference forms:

σxx(x + Δx, y) − σxx(x, y)
Δx

+ τyx(x, y + Δy) − τyx(x, y)
Δy

= 0 [7]

σyy x, y + Δy( ) − σyy x, y( )
Δy

+ τxy x + Δx, y( ) − τxy x, y( )
Δx

= 0.

From these equations, the equilibrium conditions for a small cube with sides
of length h can be expressed in Eq. 1.

Error Measurements in Predictions. The error over the training epochs
(Figs. 3C and 4C and SI Appendix, Figs. S1C and S2C) is quantified by the
MAE, defined as

Fig. 4. Superresolution elasticity imaging. (A) The ground-truth elasticity distribution (in grayscale) and strain images (in color) of the Mona Lisa model. The
unit in the elasticity distribution is MPa and that in the strain images is percentage (%). (B) The predicted elasticity distribution (in grayscale) and relative error
map (in color). The unit in the error maps is percentage (%). (C) The blue shaded line represents the MAE over the training epochs. The DNN is trained 100
times with different initial weights. The line and shading represent the median and interquartile range of the 100 predictions, respectively. The inner figures
show the intermediate predictions after 280, 1,200, 2,100, and 3,000 epochs, respectively. (D) A crop of the ground-truth image (1283128) and that of the
superresolution image (5123512) generated by ElastNet.
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MAE = 1
n2 ∑n

i

∑n
j

errorabsolute(i, j), [8]

where n is the dimension of the elasticity image in both x-direction and
y-direction. errorabsolute is the absolute error of a prediction at each material
point, defined as

errorabsolute(i, j) =
⃒⃒
Epred(i, j) − Etruth(i, j)

⃒⃒
, [9]

where Epred is the predicted elasticity and Etruth is the ground-truth elasticity.
The MAE can be used to compare the performances of different learning
algorithms on the same model. However, the MAE may not be an ideal
quantity to compare the accuracies between different models. A larger MAE
can be expected when the mean elasticity of the model is larger. Therefore,
we use the MRE to compare the accuracies between different models. The
MRE is defined as

MRE = 1
n2 ∑n

i

∑n
j

|errorrelative(i, j)|, [10]

where errorrelative (unit: %) is the relative error of a prediction at each ma-
terial point, defined as

errorrelative(i, j) = 100 × (Epred(i, j) − Etruth(i, j))/Etruth(i, j). [11]

The relative error is used to generate the error maps (Figs. 3B and 4B and
SI Appendix, Figs. S1B, S2B, and S6–S8).

ElastNet Training. The DNN consists of 16 fully connected hidden layers with
128 neurons per layer. The rectified linear unit is adopted as the activation
function. The input of the DNN is a vector of two variables (x, y) representing
the position p of a material point, and the output is the elasticity E of the
point. The stress σ at a material point is calculated by the elastic constitutive
relation based on the measured strain « and predicted elasticity E. Full-batch
learning is used when training the DNN. A predicted stress distribution σ is
generated when the entire data set is passed forward through the DNN. A
convolutional layer consisting of 6 filters of kernel size 3 × 3 with stride 1 is
used to generate residual force maps. In these 6 filters, 3 of them are
encoded for evaluating the equilibrium condition in the x-direction and the
other 3 are for the y-direction (Fig. 2A). The Adam optimizer (41) is adopted to
minimize the loss function of the DNN. The loss function consists of two parts:
one is from the residual forces and the other is from a physical constraint. The
residual forces can be measured by the MAE. However, larger residual forces can
be expected in areas with larger elasticity. Therefore, the accuracy (relative error)
in areas with smaller elasticity will be compromised when using the MAE to
measure the residual forces. To make the relative error maps more uniform, the
normalized MAE is adopted to measure the residual forces when training the
DNN to learn the hidden elasticity. The normalized MAE is defined as

lossforce = 1
m2 ∑m

i

∑m
j

|e(i, j)|
Êpred(i, j)

, [12]

where m is the dimension of the residual force map in both x-direction and

y-direction, e is the residual force, and Êpred is the sum of the predicted

elasticity values in a cube containing 3 × 3 material points. Êpred is

calculated as

Êpred(i, j) = ∑3
a=1

∑3
b=1

wE(a,b)Epred(i + a − 1, j + b − 1), [13]

where wE is a convolution kernel of ones. Two types of physical constraints
are considered. One is based on the total applied force on the boundary, in
which three force boundary conditions (BCs) can be added to the loss
function. The penalty terms for these BCs are defined as

lossBC1 = ∑m
i

⃒⃒
⃒⃒⎛⎜⎜⎜⎜⎜⎝∑m

j

σxx(i, j)ht
⎞⎟⎟⎟⎟⎟⎠ − F

⃒⃒
⃒⃒ [14]

lossBC2 = ∑m
i

⃒⃒
⃒⃒∑m

j

τxy (i, j)ht
⃒⃒
⃒⃒

lossBC3 = ∑m
j

⃒⃒
⃒⃒∑m

i

σyy (i, j)ht
⃒⃒
⃒⃒,

where F is the total applied force on the right boundary, which is the same
as the total reaction force (along the x-direction) on the left boundary (SI
Appendix, Fig. S10). These penalty terms can be applied to constrain the
distribution of the internal stresses. The equilibrium conditions for these BCs
are shown in the inner figure of SI Appendix, Fig. S1C. The other type of
physical constraints is based on the mean elasticity. The penalty term for the
mean elasticity is defined as

losselast =
⃒⃒
⃒⃒ 1
n2 ∑n

i

∑n
j

Epred(i, j) − 1
n2 ∑n

i

∑n
j

Etruth(i, j)
⃒⃒
⃒⃒. [15]

For the inclusion model (SI Appendix, Fig. S1), sinusoidal model (SI Appendix,
Fig. S2), and the “Cal” model (Fig. 3), the DNN is trained for 200,000 epochs.
For the Mona Lisa model (Fig. 4), due to the extremely complex hidden
elasticity, the DNN is trained for 800,000 epochs. As the weights in the DNN
are randomly initialized before training, the predicted elasticity distribution
cannot be exactly the same when training with different initial weights. To
better evaluate the performance of ElastNet, the predictions reported in this
work are the average values after training the DNN 100 times with different
initial weights. The DNN is trained using TensorFlow (42) with a single GPU
(NVIDIA Tesla V100 or Titan V).

Data Availability. All study data are included in the article and/or supporting
information.
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