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SUMMARY

Soft robotics, characterized by structural compliance, offers advan-
tages when handling fragile objects and interacting with humans.
Modeling the mechanical behavior of soft robots, however, is often
overlooked in previous studies due to the difficulty of capturing their
nonlinear deformation. In thiswork,wepresent a highly efficient pre-
dictor for pneumatic actuation utilizing a combination of data-driven
surrogate modeling and physics-based optimization. This hybrid
methodology explicitly captures the nonlinear mechanics of pneu-
matic components, which greatly accelerates the searching of static
equilibrium, and thus help elucidate how the overall grasping system
will interact with the environment.We have additivelymanufactured
and tested a robotic device on various objects. Results show that our
model can predict pneumatic actuation very closely matching to that
of the experiments with orders of magnitude faster computational
speed than traditional numerical simulations. Moreover, the pro-
posed framework can be extended tomodel various soft robotic de-
vices with nonlinear actuation components.
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INTRODUCTION

Robotics has been an exponentially growing research field for decades and can

generally be divided into two main categories: hard robots and soft robots.1 Aptly

named, hard robots typically have chains of rigidly hinged links that are made up

of materials with modulus values of 100–103 GPa.2,3 The hard robotics field is highly

developed and successful in conducting various sophisticated tasks requiring large

force output, fast response, and precise control.4,5 However, rigid structures have

intrinsic shortcomings, increasing research interest in soft robotics. Soft robotics

introduce structural compliance by either using soft materials directly (within a

modulus range of 10�2–103 MPa) or using actuators with controllable resistance,

creating two major advantages: more reliable handling of fragile objects and safer

interactions with humans and environments.6–9 Such characteristics enable a wide

range of applications, including rescue robots, biomedical devices, prosthetic

hands, packaging of goods, among others.10–13 Soft robotics are typically driven

by one of the following actuation mechanisms: pressure (pneumatic or fluidic),14,15

tendon,16,17 or smart responsive polymers,18–20 among which pneumatic actuation

has received the most attention for its design flexibility and ease of operation.

Over the past decade, the design of pneumatically actuated soft robots has been

extensively studied to achieve different deformation profiles, such as bending,

twisting, and lengthening.21,22 Meanwhile, researchers have also developed a vari-

ety of fabrication techniques for pneumatic actuators including 3D printing, soft

lithography, and injection molding.3,23–26
Cell Reports Physical Science 3, 100842, April 20, 2022 ª 2022
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:ggu@berkeley.edu
https://doi.org/10.1016/j.xcrp.2022.100842
http://crossmark.crossref.org/dialog/?doi=10.1016/j.xcrp.2022.100842&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS Article
Despite the thorough understanding in the design and manufacturing of pneumat-

ically actuated soft robots, there has been a lack of research in modeling their me-

chanical behavior. Numerous simulators have been developed to model the behav-

iors of hard robots accurately and efficiently,27–29 which serve as the basis for various

rigid body dynamics control research.30,31 However, similar approaches are not

adaptable to pneumatic (soft) robots due to their structural compliance. Accurately

predicting the deformation of a pneumatic actuator or robot requires the detailed

strain field, which is typically computed using numerical tools, such as finite element

method (FEM). Unfortunately, such pure physics-based method as FEM is computa-

tionally intensive, making it infeasible for making fast predictions. As a result, most

research on pneumatic actuators use FEM to sweep a parametric design space or

merely as a demonstration tool.32–34 Few studies have mathematically modeled

the deformation behaviors of pneumatic actuators based on geometry or loading

simplifications, such as constant total length, constant curvature, soft elastic beam

assumptions, zero loading, or unidirectional loading.35–37 These studies show prom-

ising results when predicting the kinetics and kinematics of a single pneumatic actu-

ator or joint, but are not well examined when functioning as a component of a

gripper system that involves more complex loadings. This underscores an important

research gap in general-purpose efficient modeling for pneumatic actuators and

grippers.

Previously, we designed a pneumatic actuator where its bellow structure is opti-

mized for dexterity under given pressure inputs.34 A pneumatic gripper is then con-

structed using the designed actuator that functions as the joints. The gripper is ex-

pected to stay in the 2D vertical plane with the two fingers operating symmetrically,

where each finger contains four pressure control channels. Unlike most existing de-

signs, which have the pneumatic actuator functioning as the entire finger,38–40 the

proposed articulation allows more flexibility in gripper configuration and operation.

The goal of this paper is to establish a static predictor (Figure 1A) that models the

pneumatic gripper gesture accurately and more efficiently than FEM. More specif-

ically here, gesture refers to the spatial location, orientation, and deformation of

each pneumatic gripper component, which we hope to predict from the input pres-

sures and the object to be held as seen in Figure 1B. Recently, advances in machine

learning methods such as neural networks (NNs) allow for an efficient analysis of

various material systems.41–47 However, a direct supervised learning on ground truth

gestures requires full gripper simulations, which is computationally expensive and

lacks generalizability. Instead, NN supervision only serves as a data-driven explicit

approximation to the implicit nonlinear mechanics of the pneumatic actuators

(joints), using FEM results under random loading conditions. This approach is alter-

natively named as surrogate modeling, which has been successful in various tasks

that require accelerated numerical simulations.48–51 The joint surrogate model

serves as a solution space for all physically viable pneumatic gripper gestures. The

entire gripper gesture prediction is then achieved under a data-free scheme through

searching for the optimal solution over the trained surrogate model to satisfy static

mechanics and contact constraints that are physics prior knowledge. As a result, the

gripper modeling framework is hybrid, which includes a physics-based loss function,

and nonlinear constraints formed by the data-driven pneumatic joint surrogate

model. Two potential routes are explored for the gesture modeling, an implicit iter-

ative solver, which minimizes the system unbalance under certain pressure inputs,

and an NN approach that directly maps the pressure control space to the pneumatic

joint operating space using physics loss. In other words, the NN approach will be su-

pervised by static equilibrium balance (physics loss) rather than ground truth gesture

data. Both methods can accurately predict gravity’s effect on pneumatic gripper
2 Cell Reports Physical Science 3, 100842, April 20, 2022



Figure 1. The efficient gesture predictor for a 3D printed pneumatic gripper

(A) Utilizing the power of neural network surrogate modeling and nonlinear optimization, an

efficient predictor is established to shorten the computation time by orders of magnitudes

compared with classical numerical simulation approaches.

(B) A 2D schematic of the pneumatic gripper is constructed whereby the deformed joints are

represented by their center lines. The pressure control is represented as P1 and P2 with positive and

negative values corresponding to the right and left channels, respectively.

(C) The cross-section view of the pneumatic joint CAD model. In the FEA simulation, the joint is

considered to be fixed at the proximal end and loaded at the distal end. The coordinate of the force

is consistent with the undeformed joint coordinate. The input pressure is defined as positive when

the top bellow channel is pressurized, and vice versa.

(D) The schematic for the joint surrogate model. The surrogate model (neural network) takes the

pressure, forces, and torque as inputs and predicts the deformed coordinates of 10 anchor points

on the joint center line.
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gestures with greatly reduced computation time. When estimating the object

gripping gestures, there remain unsolved challenges that impede the forward NN

predictor from properly learning the contact states, making instantaneous gesture

estimations difficult. However, the inverse iterative solver built upon the joint surro-

gate model still shows good performance and has shortened the computation cost

by orders of magnitude compared with numerical methods.
RESULTS

Joint surrogate modeling

To realize fast gesture prediction for a soft gripper, the first step is to construct the

solution space by establishing a differentiable forward model for the nonlinear
Cell Reports Physical Science 3, 100842, April 20, 2022 3
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component (pneumatic joint) of the gripper. This is achieved through a surrogate

model implemented using deep NNs based on numerical simulation results. For

the most generality, the loading and boundary conditions applied on the pneumatic

joint are agnostic of the entire gripper assembly so that the surrogate model is

consistent regardless of the joint location. The deformation of the joint is deter-

mined by pressure in the channel, force, and torque applied at the distal end of

the joint; hence these five parameters (two pressure values, the joint end tangential

and normal forces, and one torque value) are considered as input features to the NN

(Figure 1C). To simplify the input features, we use one parameter to represent the

pressure state of the joint since there is always one channel kept at ambient pressure.

We assign the positive range of the pressure parameter to the upper pneumatic

channel and the negative range to the lower pneumatic channel as seen in Figure 1C.

In this way, four parameters (P, F1, F2, and M) are left and serve as inputs to the sur-

rogate model. The range of the input parameters are set to be 0%P%0:3MPa,� 3%

F1%3N,�3%F2%3N, and�0:1%M%0:1 Nm. The output of the model contains the

position vectors of 10 equally distanced anchor points on the center line (Figure 1D)

with respect to the proximal end of the pneumatic joint, denoted as ri = ½xi yi�T ; i =
1;2;.;10. The surrogatemodel is then written as R = surðP;tÞ, where R = ½r1 r2.r10�
and t = ½F1 F2 M�T . The function surð ,Þ is realized through a deep NN which is fine-

tuned on the number of layers as well as nodes to achieve optimal performance (Fig-

ure 2A). The training data were obtained from FEM simulation based on randomly

generated input variables. A total of 2,560 sets of simulated joint deformation is ob-

tained and divided into training, validation, and testing dataset with a 7:2:1 ratio,

respectively. The FEM simulation for a single pneumatic joint takes approximately

7 min to accomplish. Taking advantage of the symmetry of the pneumatic joint,

each training data tuple fR; P; tg can be augmented to create new data

fR ,½1 � 1�T ; � P; t ,½1 � 1 � 1�Tg. The Adam optimizer is used with a learning

rate of 0.0016 and an exponential rate factor of 0.99/epoch to conduct gradient

descent. The training result on the original and augmented training datasets is

shown in Figure 2B. The loss is defined as the average error (Euclidean metric) be-

tween predicted coordinates ri and the ground truth ~ri (coordinates obtained

from simulation) over the 10 anchor points, denoted as 1
10

P10
i = 1kri � ~rik. The

augmented dataset reaches a loss value of 0.19 mm after 500 epochs of training.

As the length of the joint is 45.45 mm, the average loss achieved by our surrogate

model is less than 0.5% of the joint size. Figure 2C shows a comparison between

FEM simulations and surrogate model predictions on two randomly selected cases.

The color bar in the FEA simulation result represents the amount of total displace-

ment. The surrogate model prediction is visualized as a plain red color, which

matches well with the numerical simulations. As a baseline comparison, a k-nearest

neighbors (KNNs) regression model is constructed on the same dataset with k = 4

determined from validation. Despite the low input dimension, the KNNmodel shows

an average loss of 1.04 mm (�5 times of the NN loss), confirming the necessity of

interpolating the pneumatic joint behavior with an NN. Furthermore, the auto differ-

entiation ability of the NN offers fast gradient computation, which is essential for

finding the equilibrium gripper gesture.

Error propagation of the surrogate model

To describe the gesture of the gripper using only the anchor points on the center line

of the pneumatic joints, one important assumption made is that the pneumatic

joints and the rigid components are tangent to each other at their connections.

Based on this assumption, the orientation at the end of a pneumatic joint is deter-

mined as 4i = qi + cos�1 ðr10�r9Þ,ex
r10�r9

, where 4i and qi represent the orientation at the

distal and proximal end of joint i (index shown in Figure 1B). Note that q2 and 41
4 Cell Reports Physical Science 3, 100842, April 20, 2022



Figure 2. Sample predictions from the joint surrogate model

(A) Neural network structure of the joint surrogate model. The model takes pressure, force, torque

states as inputs and outputs the displacement of the 10 anchor points on the joint center line in the

2D plane. The neural network contains three hidden layers of sizes 96, 192, and 96.

(B) The validation loss over the training process. The loss has a unit of millimeter and represents the

distance from the predicted coordinates to the ground truth coordinates. The symmetry

augmented dataset has superior performance.

(C) Two random comparisons between the FEA simulation and surrogate model predictions. The

FEA results are shown on the left with the color bars showing the total displacement. The deformed

joint centerline coordinates predicted by the surrogate model are plotted on the right. The top

row has p = 0.34 MPa, F1 = 1.84 N, F2 = 2.02 N, M = 2.73 Nmm. The bottom row has p = �0.3 MPa,

F1 = 2.97 N, F2 = �2.35 N, M = �5.85 Nmm.
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are always equivalent since they are connected by a rigid rectangular part. As the

number of joints increases (from a single joint to a gripper system), the deformation

error accumulates and magnifies at the tip end. For instance, a 1� change for 41

would cause an approximately 3 mm displacement at the gripper tip. Therefore, it

is important to investigate the performance of the joint surrogate model when

assembled with rigid components. In Figure 3, four groups of pressure settings

are compared among the results of FEA simulation, joint surrogate model, and ex-

periments. At this stage, no kinetics is involved, and the gestures are purely results

of pressurization. Among the output results, bending angle is one of the dominant

factors that affect the gripper gesture and is highlighted and labeled in Figure 3.

Taking the FEM simulation results (middle column in Figure 3) as a reference, the

3D printed gripper tends to bend less while the surrogate model tends to predict

excessive bending as seen in Figure 3A and 3B. In this case, the two pneumatic joints

are pressurized in the same direction. Although being insignificant on a single joint,

the error accumulates and causes distinct predictions at the gripper tip. On the other
Cell Reports Physical Science 3, 100842, April 20, 2022 5



Figure 3. Error propagation of the surrogate model on the assembled gripper

(A–D) Comparison between the tip orientation obtained from experiments (qe), numerical simulations (qn), and the joint surrogate model (qs) on one of

the entirely assembled gripper finger. The joints are pressurized to deform without constraints, and there are no forces or torques involved in this test.

The color bars represent the amount of total displacement predicted by FEM. In the plots generated by the surrogate model, the red curves represent

the rigid components and the blue curves represent the pneumatic joints.

(A) p = 0.05 MPa for both joints. (B) p = 0.1MPa for both joints. (C) p = 0.05 MPa for joint 1, and p = �0.05 MPa for joint 2. (D) p = 0.1 MPa for joint 1, and

p = �0.1 MPa for joint 2.
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hand, when the two joints are pressurized oppositely as seen in Figures 3C and 3D,

we obtain similar gripper tip rotations from experiments, FEM, and the surrogate

model. In this case, the prediction error from the two joints compensates for each

other. Nevertheless, excessive joint deformation predicted by the surrogate model

yields a larger vertical displacement at the gripper tip. Although the error from the

joint surrogate NN seems to accumulate and becomes non-negligible at the gripper

tip, it is greatly mitigated when external forces and torques are involved, which will

be discussed in more detail in the following sections.
Soft gripper gesture prediction

With the fine-tuned pneumatic joint surrogate model, we are ready to establish a

predictor that models how the assembled pneumatic gripper will hold an object in

the vertical plane. Due to the nonlinear correlation among the deformation, force,

and torque states of the soft gripper, the modeling has to be realized implicitly.

As seen in Figure 4A, the predictor takes the object information and the control
6 Cell Reports Physical Science 3, 100842, April 20, 2022



Figure 4. Methodology for efficient pneumatic gripper gesture predictor

(A) Schematic showing the gripper gesture solution process. The gesture is solved by optimizing

the force and torque states at the two joints. Using the trained joint surrogate model, deformation

of the entire gripper can be determined from the pressure, object information, and joint states.

Based on the deformation, force, and torque balances at the two joints can be analyzed to construct

the loss function, which is a differentiable function of the joint states. Joint states are then updated

to minimize the loss.

(B) Forces and torques from joint 1 are balanced with the weight of the remaining gripper

components and contact forces.

(C) Forces and torques from joint 2 are balanced with the weight of the tip and the contact forces.

(D) The normal contact force is evaluated through the penalty method. Friction depends on the

weight of the object and is constrained by the friction cone.

(E) Alternatively, the gesture solving process can be replaced by a neural network model that

directly maps the pressure inputs to corresponding joint states. In this case, the neural network

parameters are optimized rather than the joint states.
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signals (joint pressure inputs) as its inputs, and predicts the force and torque states

ti = ½F1 F2 M�iT at the pneumatic joints. In this work, we assume the object and the

two gripper fingers are symmetrical so that only two pressure controls, P1 and P2,

are considered. The pressure inputs Pi and predictor outputs ti are then fed into

the joint surrogate model, which computes the deformation of the pneumatic joints

(Ri = surðPi;tiÞ) and, therefore, the soft gripper gesture. Based on the current pre-

diction, net force and torque are evaluated at the distal end of the two joints.

More specifically, ti must be in balance with the weight of the corresponding gripper

components and the contact forces as shown in Figures 4B and 4C. We apply the

penalty method to calculate the normal contact force (N) whose magnitude is pro-

portional to the penetration between the object and the gripper tip, as seen in

Figures 4D and S1. The static friction (f ) is determined by the weight of the object

and constrained by the friction cone (more details in Note S1). The entire gripper

gesture is then modeled by considering static equilibrium so that any nonzero net
Cell Reports Physical Science 3, 100842, April 20, 2022 7
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force or torque residual is squared to become a physics-driven loss function L, which

can be represented as Equation 1, where Fxð ,Þ, Fyð ,Þ, andMð ,Þ are the transformed

force and torques states in the global coordinate system (Equation 2), tc and 4c

represent the contact state, Gj is the weight, illustrated in Figures 4B and 4C,

MGj = ðbrGj
�br10Þ3Gj is the torque generated by weight Gj with brG2

= 1
10

P
kbrk for

joint 2, and a, b, and g are tunable loss function parameters. The global positionsbRi = ½br1 br2.br10�i can be obtained from Equation 3 using the corresponding proximal

end coordinate r0; i and orientation qi. Since the loss function is differentiable with

respect to the joint force and torque states (i.e., the NN joint surrogate model can

be backpropagated), gradient steps can be calculated to update ti and minimize

the loss.

L =
X
i

"
aðFxðti ;4iÞ+ Fxðtc ;4cÞÞ2 + b

 
Fyðti ;4iÞ+ Fyðtc ;4cÞ+

X
j

Gj,ey

!2

+g

 
Mðti ;4iÞ+

X
j

MGj

!2#
(Equation 1)
24 Fx

Fy

M

35ðti ;4iÞ =
24 cos ð4iÞ �sin ð4iÞ 0
sin ð4iÞ cos ð4iÞ 0
0 0 1

35ti (Equation 2)
bRi = r0; i +

�
cos ðqiÞ �sin ðqiÞ
sin ðqiÞ cos ðqiÞ

�
Ri (Equation 3)

Besides the iterative gesture predictor, we also explore the possibility of establish-

ing an NN as a direct model, as seen in Figure 4E. This NN approach adopts the

exact same loss function as the iterative approach, but updates the network param-

eters rather than the joint states. Unlike the implicit solving process discussed above,

the NN functions as a forward model that directly maps the input space (Pi ) to the

output space (ti ), and is therefore able to make predictions in negligible time

once properly trained. In the following sections, we demonstrate how our proposed

method solves for the pneumatic gripper gesture when affected by self-weight and

holding an object.
Gravity effect

We first examine the proposed gesture predictor under the simple scenario where

no object is involved (N = 0, f = 0). Therefore, the only external factor affecting

the soft gripper is gravity. Unlike any rigid gripper whose input signals have absolute

control of the gesture, a soft pneumatic gripper’s gesture can be heavily affected by

its self-weight, especially when operating in a vertical configuration. The predictor’s

objective is to search for a proper gesture where the gripper’s self-weight and

the corresponding torque generated are well balanced by the pneumatic joints

(Equation 1). We use an initial guess of 0 for the joint force and torque states with

a limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimizer, which

conducts quasi-Newton method with some stochastic line search to update the joint

states ti . The solution process takes approximately 2–3 s to converge whereas the

FEM approach takes more than 20 min to calculate the entire gesture even when

no forces or torques are involved. The predictions are then validated experimentally

with the 3D printed pneumatic gripper, as shown in Figure 5A. The middle column of

Figure 5A shows the gestures that are directly interpolated from the surrogate

model assuming no force or torque interactions. It can be observed that the gripper

deformsmuchmore significantly than experiments (left column) if the gravity effect is
8 Cell Reports Physical Science 3, 100842, April 20, 2022



Figure 5. Gesture predictions under pure gravitational effects and when gripping objects

(A–C) (A) Comparison between the gesture predictor and experimental results when there is no object. The experiments are conducted in the vertical

plane. For the predicted gesture plots, the red curves represent the rigid components, and the blue curves represent the pneumatic joints. Two

different input pressures are investigated with P1 = �0.1 MPa, P2 = 0.1 MPa, and P1 = 0.1 MPa, P2 = �0.1 MPa. The validation error during the training of

an object-free gesture predictor neural network is shown for the averaged unbalanced force and torques at (B) joint 1 over 75 epochs of training and

(C) joint 2 over 75 epochs of training.

(D) Two different gestures to hold a circular object (colored as green) which has a radius of 3 cm, and a weight of 0.2 N. The predictions (red curves for

rigid components, blue curves for pneumatic joints) are compared with experimental results conducted in the vertical plane.

(E) Two different gestures to hold an elliptical object, which has a major axis of 3.5 cm, a minor axis of 2.5 cm, and a weight of 0.2 N.

(F–H) (F) Two different gestures to hold a rectangular object, which has a length of 6 cm, a height of 5 cm, and a weight of 0.2 N. The validation error

during the training of the gesture predictor neural network shown for the averaged unbalanced force and torques at (G) joint 1 over 75 epochs of training

and (H) joint 2 over 75 epochs of training.
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ignored (self-collision is not considered allowing the gripper fingers to cross each

other). The right column shows the converged solutions from the gesture predictor,

which matches well with the experimental results on the 3D printed gripper. Small

discrepancies can be observed between our predictions and experiments due to

pressure gauge resolution, pressure tube stiffness, joint surrogate model uncer-

tainties, and the joint interface assumption (more details in the discussion).
Cell Reports Physical Science 3, 100842, April 20, 2022 9
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Furthermore, we test the NN approach to maximize the gesture prediction process

efficiency and decrease computational time. As previously discussed, an NN is con-

structed to take pressure controls Pi as inputs and predict the joint operating states

ti as outputs. The NN consists of 4 hidden layers with sizes of 32, 64, 64, and 32. Us-

ing a uniform distribution, 4,800 sets of input pressures are randomly generated

within the range of 0–0.3 MPa, where 4,000 are for training and 800 are for valida-

tion. Using the same loss function (Equation 1) as for the implicit gesture predictor,

the NN predictor is trained for 75 epochs using the Adam optimizer with a batch size

of 20, learning rate of 3 3 10�4, and exponential rate decay factor of 0.94. The

training procedure is accomplished within 10 min on an RTX 2080 GPU.

Figures 5B and 5C show the amount of force and torque mismatch at the two joints

evaluated on the validation dataset throughout the training procedure. For all pre-

dictions from this trained NN predictor, the expected force and torque unbalance is

below 2 mN and 1.2 Nmm. The NN predictions are indistinguishable from the im-

plicit predictor solutions and well match the experiments. Furthermore, it takes

less than 0.1 s to query this NN model and obtain the gesture prediction (compared

with 20–30 min to do the same task using FEM, for example). We note that the NN

model can also be realized through a supervised manner where ground truth labels

can be obtained first by solving the gestures individually using the implicit predictor.

However, such data-based training would be extraneous as the solution process can

be integrated into the training loss function.

Object gripping

We have shown that the proposed approach can accurately and efficiently predict

the pneumatic gripper gesture under gravity. The next step is to model the object

gripping gesture. Specifically, contact forces will be involved. The predictor has

the exact same structure as discussed before, but the net force and torque loss func-

tions now contain two additional terms: a normal contact force approximated using

the penalty method, and a static friction determined by the object weight and fric-

tion cone (the friction coefficient is set to 0.3). The gripper tip is discretized into small

segments whose penetration magnitudes are determined from a local contact

search (Figure S1). The same L-BFGS optimizer is used to update the force and tor-

que predictions starting from the initial 0-point. However, it is difficult for the opti-

mizer to converge for a couple of reasons: first, the contact penalty term may

generate huge gradient steps due to the nonlinear contact boundary and force

magnitude. Second, the uncertainty and nonlinearity of the NN joint surrogate

model are amplified due to the large contact penalty. Finally, multiple static contact

solutions for a soft pneumatic gripper can exist. To resolve the aforementioned is-

sues, we apply extra penalty terms F1, F2, andM to the loss function whenever these

terms exceed their respective thresholds of 3 N, 3 N, and 0.1 Nm. These extra terms

help the predictor avoid the domain where the joint surrogate model is not trained

on. Moreover, ramp-based intermediate sub-steps are inserted during the solution

process to restrict the solution search within the local convex hull. With these

modifications applied, the predictor takes approximately 10–15 s to converge de-

pending on the input pressures and the object shape. On the other hand, solving

the object gripping gesture through the FEM approach can take over 30 min

(more than 1003 longer). The predictions are then validated with the 3D printed

pneumatic gripper. We test three different object shapes, respectively, as demon-

strated in Figures 5D–5F: a circular object with a radius of 30 mm, an elliptical object

with a major axis of 35 mm and minor axis of 25 mm, and a rectangular 60 3 50 mm

object. Two gestures are demonstrated for each of these objects with different pres-

sure inputs at the pneumatic joints. The predicted object gripping gestures well

match the experimental results for all six cases with small discrepancies caused by
10 Cell Reports Physical Science 3, 100842, April 20, 2022
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pressure gauge resolution, pressure tube stiffness, joint surrogate model uncer-

tainties, and the joint interface assumption (more details in the discussion).

The NN approach is also examined for object gripping gesture prediction. As a case

study, we use a circular object with 30 mm radius, 20 g weight, and 23 cm away from

the gripper base. The goal is to train an NN to predict the gripping gesture for this

circular object at different input pressures. We adopt the same NN structure and

physics-driven training configuration as used for the gravity effect only. However,

the NN predictor faces difficulties in learning the object gripping gesture properly.

The converged NNs still yield an average net force loss of over 0.01 N and a net tor-

que loss of over 7 Nmm, 10 times higher than the case without contact as plotted in

Figures 5G and 5H. Overall, the NNs can make reasonable predictions under small

pressure inputs where the gripper tip is not supposed to be in contact with the object

(Figure S2A). However, for large input pressures that force the gripper to interact

with the object, the NN tends to make erroneous gesture predictions (Figure S2B).

The difference in predictions is mainly caused by inaccurate gradient directions due

to the nonlinearity of static contact evaluation.
DISCUSSION

We have demonstrated that the proposed modeling framework can predict pneu-

matic gripper gestures in seconds with negligible mismatch. Such fast prediction

capability is an important feature for a variety of robotics applications where a large

number of gesture trials are needed for better control.52–54 Unlike rigid robotic arms,

which are governed mostly by linear mechanics, the major difficulty of soft gripper

gesture prediction lies in the compliance of its pneumatic components causing

nonlinear interaction between the gripper and any external forces. While the FEM

approach has been extensively used to predict the deformation of pneumatic actu-

ators,55–58 accurate results from FEM come with an expensive computational cost.

On the other hand, our iterative predictor can perform the same task 100 times faster

than FEM simulations. One key component for realizing such accelerated predic-

tions is the data-driven joint surrogate model, which takes approximately 12 days

for data collection and supervised training. This NN model not only allows for fast

forward prediction, but more importantly functions as an analytical mechanics model

with gradients available for backpropagation. Moreover, the surrogate model can

be directly adapted to different finger or gripper configurations without additional

precomputation (training) as long as the pneumatic joint articulation remains un-

changed. However, the current surrogate model contains two major limitations

that cannot be easily overcome with more training data. First, the NN surrogate

model is trained to minimize the coordinate error, whereas the joint end slope plays

a more critical role in gesture prediction. As shown in Figure 3, error in slope predic-

tion will be amplified over the entire gripper finger, making the gesture prediction

more sensitive to the joint end orientation than the centerline coordinates. Second,

the first-order derivative of the surrogate model prediction is not regularized during

the training process. This can generate undesired gradients that negatively affect

the Newton search of the L-BFGS optimizer.59 Future work will be dedicated to

address these drawbacks by modifying the network structure and training loss func-

tion. Another potential improvement for the surrogate model is to obtain ground

truth data from experimental images. Therefore, future efforts will include auto-

mating the control system and developing image-processing algorithms to extract

pneumatic joint deformation from images. Besides the surrogate model, gesture

prediction discrepancy also originates from the geometry and mechanics simplifica-

tions we made. For instance, our model assumes a tangential connection at the
Cell Reports Physical Science 3, 100842, April 20, 2022 11
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interface of the pneumatic joints and rigid components, which is not always the case

experimentally due to the flexible behavior of the joint end surface. Furthermore, the

pin-hole structure used for gripper assembly (Figure S4C) slightly stiffens the end of

the pneumatic joints, causing the experimental joint deformation to be smaller than

the data collected from FEM. The pneumatic pressurization tubes will also generate

resistive forces or torques that impede the deformation of the gripper, which is not

considered either in FEM or the proposed method. In the future, these errors can

potentially be estimated and compensated for as a function of pressure inputs using

a few experimental observations.60–62 Despite all the aforementioned sources of er-

ror, the gesture predictor is still capable of producing reasonable predictions that

are in close agreement with experimental results as seen in Figure 5. One important

reason is that all the external forces and torques from gravity or object contact tend

to resist the gripper deformation caused by pressure inputs, and therefore reduces

the overestimation of gripper deformation.

Although the proposed efficient gesture predictor does accelerate the computation

time by orders of magnitude, it still involves an implicit searching process making

instantaneous predictions difficult. The NN gesture predictor presented here func-

tions as a forward model and offers an opportunity for real-time soft gripper predic-

tion by making an inference in less than 0.1 s. As discussed in the results, when grav-

ity is the only external factor, the NN predictor can be trained directly using the

balance loss at randomly selected pressure inputs. In other words, we can make

instantaneous gripper gesture predictions with the joint FEM simulations being

the only considerable computation cost (NN training time is significantly shorter

than data collection). However, the same approach is not successful when applied

to estimate an object gripping gesture as plotted in Figures 5G and 5H. We identify

two major reasons causing this to happen. First, the normal contact force calculated

through the penalty method is much more sensitive to the gripper tip displacement

than gravity as seen in Figure S3. Unlike the smooth torque change caused by grav-

ity, the normal contact force starts to generate excessive amounts of torque on the

gripper tip as the amount of penetration increases. This phenomenon causes the NN

to favor gestures that are free of contact forces since the goal of NN training is to

minimize the expected loss from batches of data. However, decreasing the contact

coefficient further would cause unrealistic results as we can already observe small

overlaps between the object and gripper tip (Figure 5). Second, considering the

nonlinear behavior of pneumatic joints, the solution to a static contact problem is

not only a function of the final pressure inputs but also the pressure history. This his-

tory dependence is considered in the iterative predictor by adding intermediate

sub-steps so that the pressure increment is small enough to avoid multiple local

minima. However, the NN is not structured to take the pressure history into account,

and therefore fails to converge to the correct mapping between the pressure inputs

and the gestures. This further suggests that the current pressure states alone are

inadequate for the NN input space, since they do not uniquely determine the grip-

ping gesture. Potential solutions to this NN behavior will be explored in future work,

including the possibility of remapping the contact normal force to smooth out the

loss function and using recurrent NNs to make incremental gesture predictions.

Note that only two solutions are demonstrated for each object in Figures 5D–5F

as they are the most representative gestures that hold the objects stably in experi-

ments. In other words, most reliable grasping gestures are generated by pressure

combinations within close neighbors of the presented solutions, and thus look

similar to the demonstrated gestures. Nevertheless, one potential application of

our predictor is to explore any possible irregular gestures in a simulated environ-

ment. The model presented in this work is restricted to the 2D vertical plane.
12 Cell Reports Physical Science 3, 100842, April 20, 2022
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However, the proposed hybrid gripper prediction framework can be easily extended

to general 3D scenarios with a couple of modifications. For instance, all position vec-

tors will have one more degree of freedom, the loading vector will have three more

degrees of freedom considering out of plane forces and torques, the orientation

representations and rotation operations will include one more angle variable, and

the friction cone will become a 2D region. Moreover, future work will include design

and modeling of a torsional pneumatic joint which is required for adjusting the con-

tact orientation in 3D gripping applications.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information is available from the lead contact, Grace X. Gu (ggu@berkeley.

edu).

Materials availability

This study did not generate new unique materials.

Data and code availability

All data supporting this study are available in this article and in the supplemental

information.

3D printing

All the gripper components, including the pneumatic joints and the rigid parts

(Figures S4A and S4B), are 3D printed using the Prusa i3 MK3S fused filament fabri-

cation (FFF) printer. A 0.4 mm nozzle is used in this study with a layer height of

0.2 mm. All the rigid gripper components are printed from polylactic acid (PLA) fil-

aments at 20% infill density, 65�C bed temperature, 215�C nozzle temperature,

and 60 mm/s infill printing speed. The pneumatic joints are printed from NinjaFlex

(a type of thermoplastic polyurethane) filaments at 100% infill density, 80 �C bed

temperature, 240�C nozzle temperature, and 15 mm/s infill printing speed. The

pneumatic joint is designed such that its pressure channels fully utilize the bridging

ability of the FFF printer and require zero support structure. The bellow has a wall

thickness of 1.2 mm (equivalent to three rasters), the minimum requirement to

ensure air tightness. Each joint takes approximately 4 h to be printed. The weight

of the 3D printed pneumatic joint, rigid link, and rigid tip are measured to be

0.09, 0.04, and 0.06 N, respectively, and these weights are used in Equation 1 to

model gravity’s effect on the gripper gesture. Using the pin-hole structures as

seen in Figure S4C, the printed components are then assembled into the gripper

with a tip opening distance of 5 cm at free state. However, the gripper can handle

objects that are slightly wider than 5 cm utilizing the bidirectional bending ability

of the pneumatic joints. The three sample objects shown in Figures 5D–5F are

also 3D printed using PLA filaments. The infill density is adjusted so that all three ob-

jects share the same weight of 0.2 N and surface friction coefficient of 0.3.

Pressure control

Each pneumatic joint contains two pressure channels controlled independently so

that the joints can bend in different directions. Since the two channels are never pres-

surized simultaneously, we represent the pressure state of each pneumatic joint with

only one parameter whose plus or minus sign corresponds to the top or bottom

channel (Figure 1C), respectively. The entire gripper consists of four pneumatic

joints leading to eight pressure channels controlled by four pressure regulators

based on symmetry. The pressure regulator has a resolution of 0.01 MPa. For each
Cell Reports Physical Science 3, 100842, April 20, 2022 13
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experimental test, the gestures are recorded at least 2 min after full pressurization to

ensure static conditions and avoid any creep behavior at the pneumatic joints. Pres-

sure channels of the pneumatic joints can endure a maximum pressure of 0.6 MPa

before leaking, which corresponds to a maximum gripping weight of approximately

250 g.

Tensile test

Material properties of NinjaFlex are characterized through uniaxial quasi-static ten-

sile tests (see Note S2). Three NinjaFlex dogbones are 3D printed with their gauge

length labeled by white marks (Figure S5A). The dogbones are extended by 40 mm

at a rate of 3 mm/min to avoid any viscoelastic behavior. Engineering strain is calcu-

lated as the percentage change of the gauge length and converted to true strain by

taking the natural log. True stress is obtained by assuming constant volumes of the

dogbone specimens. Figure S5B shows the averaged stress-strain plot of the three

dogbone specimens. The stress-strain plot is highly linear up to a true strain of 0.8,

which can be fully captured by a linear elastic material model with a Young’s modulus

of 12.2 MPa. Considering NinjaFlex is a typical thermoplastic polyurethane material

and is virtually incompressible, the Poisson’s ratio is set to 0.49.63,64

Finite element analysis

Finite element analysis is performed using an ANSYS static structural module to

obtain the deformation of pneumatic gripper under different loading conditions

with large deflection enabled. Based on symmetry, only half of the pneumatic joint

(split from the cross-section plane as shown in Figure 1C) is analyzed. The contacts

between the inner walls of the pressure channels are assumed to be frictionless. We

adopt a tetrahedron mesh with an element size of 1.2 mm over the entire geometry.

The element size is chosen to balance the accuracy and computation cost. Further

decreasing the element size from 1.2 to 1.0 mm causes less than 3% change in dis-

placements but increases the number of nodes from 16,000 to 23,000. The boundary

condition includes zero displacement at the left end and zero normal displacement

at the symmetry plane. The loading condition includes pressure at the two channels,

normal (F1) and shear (F2) forces, as well as a torque applied to the right end of the

gripper. The maximum equivalent strain under most loading cases does not exceed

0.4, which means that the linear elastic material model is well qualified for this study.

On average, each pneumatic joint simulation takes approximately 6–7 min to com-

plete on an Intel Xeon E-2146 CPU.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.xcrp.

2022.100842.
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